如图,四边形OABC是矩形,点B的坐标为(8,6),直线AC和直线OB相交于点M,点P是OA的中点,PD⊥AC,垂足为D.
(1)求直线AC的解析式;
(2)求经过点O、M、A的抛物线的解析式;
(3)在抛物线上是否存在Q,使得S
△PAD:S
△QOA=8:25?若存在,求出点Q的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长.
查看答案
小颖为学校联欢会设计了一个“配紫色”的游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.
(1)利用树状图或列表的方法表示出游戏所有可能出现的结果;
(2)游戏者获胜的概率是多少?
查看答案
随着人们节能环保意识的增强,绿色交通工具越来越受到人们的青睐,电动摩托成为人们首选的交通工具,某商场计划用不超过140000元购进A、B两种不同品牌的电动摩托40辆,预计这批电动摩托全部销售后可获得不少于29000元的利润,A、B两种品牌电动摩托的进价和售价如下表所示:
品牌 价格 | A品牌电动摩托 | B品牌电动摩托 |
进价(元/辆) | 4000 | 3000 |
售价(元/辆) | 5000 | 3500 |
设该商场计划进A品牌电动摩托x辆,两种品牌电动摩托全部销售后可获利润y元.
(1)写出y与x之间的函数关系式;
(2)该商场购进A品牌电动摩托多少辆时?获利最大,最大利润是多少?
查看答案
为贯彻落实云南省教育厅提出的“三生教育”,在母亲节来临之际,某校团委组织了以“珍爱生命,学会生存,感恩父母”为主题的教育活动,在学校随机调查了50名同学平均每周在家做家务的时间,统计并制作了如下的频数分布和扇形统计图:
组别 | 做家务的时间 | 频数 | 频率 |
A | 1≤t<2 | 3 | 0.06 |
B | 2≤t<4 | 20 | 0.40 |
C | 4≤t<6 | A | 0.30 |
D | 6≤t<8 | 8 | B |
E | t≥8 | 4 | 0.08 |
根据上述信息回答下列问题:
(1)a=______,b=______;
(2)在扇形统计图中,B组所占圆心角的度数为______;
(3)全校共有2000名学生,估计该校平均每周做家务时间不少于4小时的学生约有多少人?
查看答案
如图,▱ABCD的两条对角线AC、BD相交于点O.
(1)图中有哪些三角形是全等的?
(2)选出其中一对全等三角形进行证明.
查看答案