满分5 > 初中数学试题 >

在-2,-,0,2四个数中,最大的数是( ) A.-2 B.- C.0 D.2

在-2,-manfen5.com 满分网,0,2四个数中,最大的数是( )
A.-2
B.-manfen5.com 满分网
C.0
D.2
根据有理数的大小比较法得出-2<-<0<2,即可得出答案. 【解析】 ∵-2<-<0<2, ∴最大的数是2, 故选D.
复制答案
考点分析:
相关试题推荐
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=manfen5.com 满分网.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:
(1)sad60°的值为( )A.manfen5.com 满分网  B.1  C.manfen5.com 满分网 D.2
(2)对于0°<A<180°,∠A的正对值sadA的取值范围是______
(3)已知sinα=manfen5.com 满分网,其中α为锐角,试求sadα的值.

manfen5.com 满分网 查看答案
某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为manfen5.com 满分网且过顶点C(0,5)(长度单位:m)
(1)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?
(2)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并增加铺设斜面EG和HF,已知矩形EFGH的周长为27.5m,求增加斜面的长.
manfen5.com 满分网
查看答案
如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.
(1)求tan∠BOA的值;
(2)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;
(3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B'的坐标为(2,-2),在坐标系中作出△O′A′B′,并写出点O′、A′的坐标.

manfen5.com 满分网 查看答案
如图,有一块含30°的直角三角板OAB的直角边长BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把该套三角板放置在平面直角坐标系中,且manfen5.com 满分网
(1)若双曲线的一个分支恰好经过点A,求双曲线的解析式;
(2)若把含30°的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好与x轴重叠,点A落在点A′,试求图中阴影部分的面积(结果保留π).

manfen5.com 满分网 查看答案
如图①,将一张直角三角形纸片△ABC折叠,使点A与点C重合,这时DE为折痕,△CBE为等腰三角形;再继续将纸片沿△CBE的对称轴EF折叠,这时得到了两个完全重合的矩形(其中一个是原直角三角形的内接矩形,另一个是拼合成的无缝隙、无重叠的矩形),我们称这样两个矩形为“叠加矩形”.
(1)如图②,正方形网格中的△ABC能折叠成“叠加矩形”吗?如果能,请在图②中画出折痕;
(2)如图③,在正方形网格中,以给定的BC为一边,画出一个斜三角形ABC,使其顶点A在格点上,且△ABC折成的“叠加矩形”为正方形;
(3)若一个三角形所折成的“叠加矩形”为正方形,那么它必须满足的条件是什么?
manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.