满分5 > 初中数学试题 >

如图,平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),...

如图,平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.
(1)求点E的坐标;
(2)求抛物线的函数解析式;
(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;
(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.

manfen5.com 满分网
(1)根据A、B两点坐标求直线AB的解析式,令x=0,可求E点坐标; (2)设抛物线解析式为y=ax2+bx+c,将A(-2,2),B(6,6),O(0,0)三点坐标代入,列方程组求a、b、c的值即可; (3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m,与抛物线解析式联立,得出关于x的一元二次方程,当△=0时,△BON面积最大,由此可求m的值及N点的坐标; (4)根据三角形相似的性质得到BO:OA=OP:AN=BP:ON,然后根据勾股定理分别计算出BO=6,OA=2,AN=,ON=,这样可求出OP=,BP=,设P点坐标为(x,y),再利用勾股定理得到关于x,y的方程组,解方程组即可. 【解析】 (1)设直线AB解析式为y=kx+b, 将A(-2,2),B(6,6)代入,得,解得, ∴y=x+3,令x=0, ∴E(0,3); (2)设抛物线解析式为y=ax2+b′x+c, 将A(-2,2),B(6,6),O(0,0)三点坐标代入,得,解得, ∴y=x2-x (3)依题意,得直线OB的解析式为y=x,设过N点且与直线OB平行的直线解析式为y=x+m, 联立,得x2-6x-4m=0,当△=36+16m=0时,过N点与OB平行的直线与抛物线有唯一的公共点,则点N到BO的距离最大,所以△BON面积最大, 解得m=-,x=3,y=,即N(3,); 此时△BON面积=×6×6-(+6)×3-××3=; (4)过点A作AS⊥GQ于S, ∵A(-2,2),B(6,6),N(3,), ∵∠AOE=∠OAS=∠BOH=45°, OG=3,NG=,NS=,AS=5, 在Rt△SAN和Rt△NOG中, ∴tan∠SAN=tan∠NOG=, ∴∠SAN=∠NOG, ∴∠OAS-∠SAN=∠BOG-∠NOG, ∴∠OAN=∠NOB, ∴ON的延长线上存在一点P,使得△BOP∽△OAN, ∵A(-2,2),N(3,), ∵△BOP与△OAN相似(点B、O、P分别与点O、A、N对应),即△BOP∽△OAN, ∴BO:OA=OP:AN=BP:ON 又∵A(-2,2),N(3,),B(6,6), ∴BO=6,OA=2,AN=,ON=, ∴OP=,BP=, 设P点坐标为(4x,x), ∴16x2+x2=()2, 解得x=,4x=15, ∵P、P′关于直线y=x轴对称, ∴P点坐标为(15,)或(,15).
复制答案
考点分析:
相关试题推荐
△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=______;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=______
(3)求第10次剪取后,余下的所有小三角形的面积之和.

manfen5.com 满分网 查看答案
在直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=2BC=2CD,对角线AC与BD相交于点O,线段OA,OB的中点分别为E,F.
(1)求证:△FOE≌△DOC;
(2)求sin∠OEF的值;
(3)若直线EF与线段AD,BC分别相交于点G,H,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作的风筝的一个翅膀.请你根据图中的数据帮丁丁计算出BE、CD的长度(精确到个位,manfen5.com 满分网≈1.7).

manfen5.com 满分网 查看答案
2011年5月19日,中国首个旅游日正式启动.某校组织了八年级800名学生参加的旅游地理知识竞赛,李老师为了了解学生对旅游地理知识的掌握情况,从中随机抽取了部分学生的成绩作为样本,把成绩按优秀、良好、及格和不及格4个级别进行统计,并绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
manfen5.com 满分网
请根据以上提供的信息,解答下列问题:
(1)求被抽取部分学生的人数;
(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;
(3)请估计八年级800名学生中达到良好和优秀的总人数.
查看答案
在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.