满分5 > 初中数学试题 >

已知∠MAN,AC平分∠MAN. (1)在图1中,若∠MAN=120°,∠ABC...

已知∠MAN,AC平分∠MAN.
(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;
(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD=______AC;
②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD=______AC(用含α的三角函数表示),并给出证明.
manfen5.com 满分网
(1)由角平分线的性质可证∠ACB=∠ACD=30°,又由直角三角形的性质,得AB+AD=AC. (2)根据角平分线的性质过点C分别作AM,AN的垂线,垂足分别为E,F,可证AE+AF=AC,只需证AB+AD=AE+AF即可,由△CED≌△CFB,即可得AB+AD=AE+AF. (3)由(2)知ED=BF,AE=AF,在直角三角形AFC中,可求AB+AD=2cosAC. (1)证明:∵AC平分∠MAN,∠MAN=120°, ∴∠CAB=∠CAD=60°, ∵∠ABC=∠ADC=90°, ∴∠ACB=∠ACD=30°, ∴AB=AD=AC, ∴AB+AD=AC. (2)【解析】 成立. 证法一:如图,过点C分别作AM,AN的垂线,垂足分别为E,F, ∵AC平分∠MAN, ∴CE=CF, ∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°, ∴∠CDE=∠ABC, ∵∠CED=∠CFB=90°, ∴△CED≌△CFB, ∴ED=FB, ∴AB+AD=AF+BF+AE-ED=AF+AE,由(1)知AF+AE=AC, ∴AB+AD=AC, 证法二:如图,在AN上截取AG=AC,连接CG, ∵∠CAB=60°,AG=AC,∴∠AGC=60°,CG=AC=AG, ∵∠ABC+∠ADC=180°,∠ABC+∠CBG=180°, ∴∠CBG=∠ADC, ∴△CBG≌△CDA, ∴BG=AD, ∴AB+AD=AB+BG=AG=AC; (3)证明:由(2)知,ED=BF,AE=AF, 在Rt△AFC中,cos∠CAF=, 即cos, ∴AF=ACcos, ∴AB+AD=AF+BF+AE-ED=AF+AE=2AF=2cosAC. 把α=60°,代入得AB+AD=AC.
复制答案
考点分析:
相关试题推荐
西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
查看答案
如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.
(1)求证:△ABE∽△ADF;
(2)若AG=AH,求证:四边形ABCD是菱形.

manfen5.com 满分网 查看答案
水果种植大户小方,为了吸引更多的顾客,组织了观光采摘游活动.每一位来采摘水果的顾客都有一次抽奖机会:在一只不透明的盒子里有A,B,C,D四张外形完全相同的卡片,抽奖时先随机抽出一张卡片,再从盒子中剩下的3张中随机抽取第二张.
(1)请利用树状图(或列表)的方法,表示前后两次抽得的卡片所有可能的情况;
(2)如果抽得的两张卡片是同一种水果图片就可获得奖励,那么得到奖励的概率是多少?
manfen5.com 满分网
查看答案
如图,将正方体沿粗线剪开.
(1)以所给的正方形ABCD为基础,画出它的展开图;
(2)若正方体的棱长为2cm,在正方体的顶点A处有一只小虫沿着正方体的表面爬行到顶点E处,求小虫爬行的最短距离.

manfen5.com 满分网 查看答案
如图是“明清影视城”的圆弧形门,黄红同学到影视城游玩,很想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20cm,BC=200cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助黄红同学计算出这个圆弧形门的最高点离地面的高度是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.