满分5 > 初中数学试题 >

如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点...

如图1,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,
(1)连接AQ、CP交于点M,则在P、Q运动的过程中,∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;
(2)何时△PBQ是直角三角形?
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数.
manfen5.com 满分网
(1)因为点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,所以AP=BQ.AB=AC,∠B=∠CAP=60°,因而运用边角边定理可知△ABQ≌△CAP.再用全等三角形的性质定理及三角形的角间关系、三角形的外角定理,可求得CQM的度数. (2)设时间为t,则AP=BQ=t,PB=4-t.分别就①当∠PQB=90°时;②当∠BPQ=90°时利用直角三角形的性质定理求得t的值. (3)首先利用边角边定理证得△PBC≌△QCA,再利用全等三角形的性质定理得到∠BPC=∠MQC.再运用三角形角间的关系求得∠CMQ的度数. 【解析】 (1)∠CMQ=60°不变. ∵等边三角形中,AB=AC,∠B=∠CAP=60° 又由条件得AP=BQ, ∴△ABQ≌△CAP(SAS), ∴∠BAQ=∠ACP, ∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°. (2)设时间为t,则AP=BQ=t,PB=4-t ①当∠PQB=90°时, ∵∠B=60°, ∴PB=2BQ,得4-t=2t,t=; ②当∠BPQ=90°时, ∵∠B=60°, ∴BQ=2BP,得t=2(4-t),t=; ∴当第秒或第秒时,△PBQ为直角三角形. (3)∠CMQ=120°不变. ∵在等边三角形中,AB=AC,∠B=∠CAP=60° ∴∠PBC=∠ACQ=120°, 又由条件得BP=CQ, ∴△PBC≌△QCA(SAS) ∴∠BPC=∠MQC 又∵∠PCB=∠MCQ, ∴∠CMQ=∠PBC=180°-60°=120°
复制答案
考点分析:
相关试题推荐
学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况.小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图①;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图②.
manfen5.com 满分网
根据上述信息,回答下列问题:
(1)这三个月中,甲品牌电脑在哪个月的销售量最大?______月份;
(2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台?
(3)若乙品牌电脑一月份比甲品牌电脑一月份多销售42台,那么三月份乙品牌电脑比甲品牌电脑多销售(少销售)多少台?
查看答案
已知正比例函数y1=(a+3)x(a<0)与反比例函数manfen5.com 满分网的图象有两个公共点,其中一个公共点的纵坐标为4.
(1)求这两个函数的解析式;
(2)在坐标系中画出它们的图象(可不列表);
(3)利用图象直接写出当x取何值时,y1>y2
查看答案
如图,CD切⊙O于点D,连接OC,交⊙O于点B,过点B作弦AB⊥OD,点E为垂足,已知⊙O的半径为10,sin∠COD=manfen5.com 满分网.求:
(1)弦AB的长; 
(2)CD的长.

manfen5.com 满分网 查看答案
解不等式组:manfen5.com 满分网,并把解集在数轴上表示出来.
查看答案
在下面三小题中任选其中两小题完成:
(1)已知a+b=2,求代数式a2-b2+4b的值;
(2)分解因式2a4-32
(3)已知manfen5.com 满分网,求分式 manfen5.com 满分网的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.