考点分析:
相关试题推荐
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
查看答案
定义{a,b,c}为函数y=ax
2+bx+c的“特征数”.如:函数y=x
2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是
的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式是y=
;
(2)在(1)中,平移前后的两个函数分别与y轴交于A、B两点,与直线x=
分别交于D、C两点,判断以A、B、C、D四点为顶点的四边形形状,请说明理由并计算其周长;
(3)若(2)中的四边形与“特征数”是
的函数图象的有交点,求满足条件的实数b的取值范围.
查看答案
如图,已知AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.
(1)求证:DE是⊙O的切线;
(2)若∠C=30°,CE=5
,求⊙O的半径.
查看答案
如图,在四边形ABCD中,点E是BC的中点,连接DE并延长,交AB延长线于点F,AB=BF.给出下列四个条件:①AD=BC; ②DE=EF; ③∠CDE=∠F;④CD=BF.请你从中选择一个条件______,使四边形ABCD是平行四边形,并证明你的结论.
查看答案
如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.
(1)判断△ABC和△DEF是否相似,并说明理由;
(2)P
1,P
2,P
3,P
4,P
5,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连接相应线段,不必说明理由)
查看答案