满分5 > 初中数学试题 >

在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直...

在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).
manfen5.com 满分网
(1)请直接写出点B、C的坐标:B______、C______
(1)利用解直角三角形求出OC的长度,再求出OB的长度,从而可得点B、C的坐标,然后利用待定系数法求二次函数解析式解答; (2)①根据相似三角形对应边成比例列式求出OE的长度,再根据点A的坐标求出AO的长度,相加即可得到AE的长度,即x的值; ②根据①确定点E在对称轴上,然后求出∠FEB=60°,根据同位角相等两直线平行求出EF∥AC,再求出直线EF的解析式,与抛物线解析式联立求出点M的坐标,再利用两点间的距离公式求出EM的长度,再分PE=EM,PE=PM,PM=EM三种情况分别求解. 【解析】 (1)∵点A(-1,0), ∴OA=1, 由图可知,∠BAC是三角板的60°角,∠ABC是30°角, 所以,OC=OA•tan60°=1×=, OB=OC•cot30°=×=3, 所以,点B(3,0),C(0,), 设抛物线解析式为y=ax2+bx+c, 则, 解得, 所以,抛物线的解析式为y=-x2+x+; (2)①∵△OCE∽△OBC, ∴=, 即=, 解得OE=1, 所以,AE=OA+OE=1+1=2, 即x=2时,△OCE∽△OBC; ②存在.理由如下: 抛物线的对称轴为x=-=-=1, 所以,点E为抛物线的对称轴与x轴的交点, ∵OA=OE,OC⊥x轴,∠BAC=60°, ∴△ACE是等边三角形, ∴∠AEC=60°, 又∠DEF=60°, ∴∠FEB=60°, ∴∠BAC=∠FEB, ∴EF∥AC, 由A(-1,0),C(0,)可得直线AC的解析式为y=x+, ∵点E(1,0), ∴直线EF的解析式为y=x-, 联立, 解得,(舍去), ∴点M的坐标为(2,), EM==2, 分三种情况讨论△PEM是等腰三角形, 当PE=EM时,PE=2, 所以,点P的坐标为(1,2)或(1,-2), 当PE=PM时,∵∠FEB=60°, ∴∠PEF=90°-60°=30°, PE=EM÷cos30°=×2÷=, 所以,点P的坐标为(1,), 当PM=EM时,PE=2EM•cos30°=2×2×=2, 所以,点P的坐标为(1,2), 综上所述,抛物线对称轴上存在点P(1,2)或(1,-2)或(1,)或(1,2),使△PEM是等腰三角形.
复制答案
考点分析:
相关试题推荐
矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对应点A′落在线段BC上,再打开得到折痕EF.
(1)当A′与B重合时,(如图1),EF=______;当折痕EF过点D时(如图2),求线段EF的长;
(2)观察图3和图4,设BA′=x,①当x的取值范围是______时,四边形AEA′F是菱形;②在①的条件下,利用图4证明四边形AEA′F是菱形.manfen5.com 满分网
查看答案
已知:用2辆A型车和1辆B型车载满货物一次可运货10吨;用1辆A型车和2辆B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都载满货物.
根据以上信息,解答下列问题:
(1)1辆A型车和1辆车B型车都载满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
查看答案
如图1,过△ABC的顶点A作高AD,将点A折叠到点D(如图2),这时EF为折痕,且△BED和△CFD都是等腰三角形,再将△BED和△CFD沿它们各自的对称轴EH、FG折叠,使B、C两点都与点D重合,得到一个矩形EFGH(如图3),我们称矩形EFGH为△ABC的边BC上的折合矩形.
(1)若△ABC的面积为6,则折合矩形EFGH的面积为______
(2)如图4,已知△ABC,在图4中画出△ABC的边BC上的折合矩形EFGH;
(3)如果△ABC的边BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC边上的高AD=______,正方形EFGH的对角线长为______
查看答案
某校为了解八年级300名学生期中考的数学成绩,随机抽查了该年级50名学生的期中考数学成绩进行分析,绘制了不完整的频数分布表和频数分布直方图.manfen5.com 满分网
                           频数分布表
 成绩分组 频数 频率
30≤x<40 1 0.02
 40≤x<50 1 0.02
 50≤x<60 3  0.06 
 60≤x<70 10 0.2
 70≤x<80 15 0.3
 80≤x<90 15 0.3
 90≤x<100 5 0.1
 合计 50 1
(1)以上分组的组距=______
(2)补全频数分布表和频数分布直方图;
(3)请你估计该校八年级期中考数学成绩优秀(不低于80分为优秀)的总人数.
查看答案
如图,已知CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.
(1)求证:AB是⊙O的切线;
(2)若⊙O的半径为2,求manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.