满分5 > 初中数学试题 >

如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥...

如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;
(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=manfen5.com 满分网时,求CH的长.
manfen5.com 满分网
(1)寻找AG、CE所在的两个三角形全等的条件,证明全等即可; (2)①由△AGD≌△CED,可知∠1=∠2,利用对顶角相等及互余关系证明垂直; ②连接GE交AD于P,根据S△AGD+S△ACD=S四边形ACDG=S△ACG+S△CGD,再分别表示四个三角形的底和高,列方程求CH. 【解析】 (1)AG=CE成立. 证明:∵四边形ABCD、四边形DEFG是正方形, ∴GD=DE,AD=DC,(1分) ∠GDE=∠ADC=90°. ∴∠GDA=90°-∠ADE=∠EDC.                     (2分) ∴△AGD≌△CED. ∴AG=CE.                                     (3分) (2)①类似(1)可得△AGD≌△CED, ∴∠1=∠2.                                    (4分) 又∵∠HMA=∠DMC, ∴∠AHM=∠ADC=90°, 即AG⊥CH.                                    (5分) ②连接GE,交AD于P,连接CG, 由题意有, ∴AP=3,.                            (8分) ∵EG⊥AD,CD⊥AD,∴EG∥CD, ∴以CD为底边的△CDG的高为PD=1,(延长CD画高) S△AGD+S△ACD=S四边形ACDG=S△ACG+S△CGD ∴4×1+4×4=×CH+4×1 ∴CH=.                                   (10分)
复制答案
考点分析:
相关试题推荐
已知抛物线y=x2-mx+m-2.
(1)求证:此抛物线与x轴有两个不同的交点;
(2)若m是整数,抛物线y=x2-mx+m-2与x轴交于整数点,求m的值;
(3)在(2)的条件下,设抛物线的顶点为A,抛物线与x轴的两个交点中右侧交点为B.若m为坐标轴上一点,且MA=MB,求点M的坐标.
查看答案
在数学活动课上,老师请同学们在一张长为18cm,宽为14cm的长方形纸上剪下一个腰为12cm的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).小明同学按老师要求画出了如图的设计方案示意图,请你画出与小明的设计方案不同的所有满足老师要求的示意图,并通过计算说明哪种情况下剪下的等腰三角形的面积最小(含小明的设计方案示意图).

manfen5.com 满分网 查看答案
某校对中考前一次数学模拟考试进行抽样分析,把样本成绩按分数段分成A、B、C、D、E五组(每组成绩含最低分,不含最高分)进行统计,并将结果绘制成下面两幅统计图.请根据图中信息,解答下列问题:
(1)求A组人数在扇形图中所占圆心角的度数;
(2)求D组人数;
(3)判断考试成绩的中位数落在哪个组?(直接写出结果,不需要说明理由)manfen5.com 满分网
查看答案
已知,如图,AB是⊙O的直径,点E是manfen5.com 满分网的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

manfen5.com 满分网 查看答案
已知:如图,在四边形ABCD中,∠A=150°∠D=90°,AD=4,AB=6,CD=manfen5.com 满分网.求四边形ABCD的周长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.