满分5 > 初中数学试题 >

如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠...

如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.
(1)判断直线AC与圆O的位置关系,并证明你的结论;
(2)若AC=8,manfen5.com 满分网,求AD的长.

manfen5.com 满分网
(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线; (2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD. 【解析】 (1)AC与⊙O相切. 证明:∵弧BD是∠BED与∠BAD所对的弧, ∴∠BAD=∠BED, ∵OC⊥AD, ∴∠AOC+∠BAD=90°, ∴∠BED+∠AOC=90°, 即∠C+∠AOC=90°, ∴∠OAC=90°, ∴AB⊥AC,即AC与⊙O相切; (2)【解析】 连接BD. ∵AB是⊙O直径, ∴∠ADB=90°, 在Rt△AOC中,∠CAO=90°, ∵AC=8,∠ADB=90°,, ∴AO=6, ∴AB=12, 在Rt△ABD中,∵cos∠OAD=cos∠BED=, ∴AD=AB•cos∠OAD=12×=.
复制答案
考点分析:
相关试题推荐
现有一个种植总面积为540m2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积,产量、利润分别如下:
占地面积(m2/垄)产量(千克/垄)利润(元/千克)
西红柿301601.1
草莓15501.6
(1)若设草莓共种植了x垄,通过计算说明共有几种种植方案分别是哪几种;
(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?
查看答案
有三张背面完全相同的卡片,它们的正面分别写上manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,把它们的背面朝上洗匀后;小丽先从中抽取一张,然后小明从余下的卡片中再抽取一张.
(1)直接写出小丽取出的卡片恰好是manfen5.com 满分网的概率;
(2)小刚为他们设计了一个游戏规则:若两人抽取卡片上的数字之积是有理数,则小丽获胜;否则小明获胜.你认为这个游戏规则公平吗?若不公平,则对谁有利?请用画树状图或列表法进行分析说明.
查看答案
如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.
(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=manfen5.com 满分网BC,证明:平行四边形EGFH是正方形.

manfen5.com 满分网 查看答案
某校初三课外活动小组,在测量树高的一次活动中.如图所示,测得树底部中心A到斜坡底C的水平距离为8.8m,在阳光下某一时刻测得l米的标杆影长为0.8m,树影落在斜坡上的部分CD=3.2m,已知斜坡CD的坡比i=1:manfen5.com 满分网,求树高AB.(结果保留整数,参考数据:manfen5.com 满分网≈1.7).

manfen5.com 满分网 查看答案
某校举行手工制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:
分数段频数频率
60≤x<70300.15
 70≤x<80m0.45
 80≤x<9060n
 90≤x<100200.1
请根据以上图表提供的信息,解答下列问题:
(1)表中m和n所表示的数分别为:m=______,n=______,
(2)请在图中,补全频数分布直方图;
(3)比赛成绩的中位数落在哪个分数段?
(4)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.