满分5 > 初中数学试题 >

在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线...

在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.
(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想:
(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.
manfen5.com 满分网
(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠AED=∠ACB,∠ACB=2∠B,所以∠AED=2∠B,即∠B=∠BDE,易证DE=CD,则可求得AB=AC+CD; (2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD. 【解析】 (1)猜想:AB=AC+CD. 证明:如图②,在AB上截取AE=AC,连接DE, ∵AD为∠BAC的角平分线时, ∴∠BAD=∠CAD, ∵AD=AD, ∴△ADE≌△ADC(SAS), ∴∠AED=∠C,ED=CD, ∵∠ACB=2∠B, ∴∠AED=2∠B, ∵∠AED=∠B+∠EDB, ∴∠B=∠EDB, ∴EB=ED, ∴EB=CD, ∴AB=AE+DE=AC+CD. (2)猜想:AB+AC=CD. 证明:在BA的延长线上截取AE=AC,连接ED. ∵AD平分∠FAC, ∴∠EAD=∠CAD. 在△EAD与△CAD中, AE=AC,∠EAD=∠CAD,AD=AD, ∴△EAD≌△CAD(SAS). ∴ED=CD,∠AED=∠ACD. ∴∠FED=∠ACB, 又∵∠ACB=2∠B ∴∠FED=2∠B,∠FED=∠B+∠EDB, ∴∠EDB=∠B, ∴EB=ED. ∴EA+AB=EB=ED=CD. ∴AC+AB=CD.
复制答案
考点分析:
相关试题推荐
今年我省干旱灾情严重,甲地急需抗旱用水15万吨,乙地13万吨.现有两水库决定各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米
(1)设从A水库调往甲地的水量为x万吨,完成下表:
manfen5.com 满分网总计
Ax14
B14
总计151328
(2)请设计一个调运方案,使水的调运总量尽可能小.
查看答案
如图,将矩形纸片ABCD按如下的顺序进行折叠:对折,展平,得折痕EF(如图①);延CG折叠,使点B落在EF上的点B′处,(如图②);展平,得折痕GC(如图③);沿GH折叠,使点C落在DH上的点C′处,(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图 ⑥).
(1)求图 ②中∠BCB′的大小;
(2)图⑥中的△GCC′是正三角形吗?请说明理由.manfen5.com 满分网
查看答案
2011年5月19日,中国首个旅游日正式启动.某校组织了八年级800名学生参加的旅游地理知识竞赛,李老师为了了解学生对旅游地理知识的掌握情况,从中随机抽取了部分学生的成绩作为样本,把成绩按优秀、良好、及格和不及格4个级别进行统计,并绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
manfen5.com 满分网
请根据以上提供的信息,解答下列问题:
(1)求被抽取部分学生的人数;
(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;
(3)请估计八年级800名学生中达到良好和优秀的总人数.
查看答案
如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网,其中manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.