满分5 > 初中数学试题 >

如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD...

如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标.

manfen5.com 满分网
(1)将A、B点的坐标代入抛物线的解析式中即可求出待定系数的值; (2)由于A、D关于抛物线对称轴即y轴对称,那么连接BD,BD与y轴的交点即为所求的M点,可先求出直线BD的解析式,即可得到M点的坐标; (3)设直线BC与y轴的交点为N,那么△ABM的面积即为梯形ABNO、△BMN、△AOM的面积差,由此可求出△ABM和△PAD的面积;在△PAD中,AD的长为定值,可根据其面积求出P点纵坐标的绝对值,然后代入抛物线的解析式中即可求出P点的坐标. 【解析】 (1)由题意可得:, 解得; ∴抛物线的解析式为:y=x2-4; (2)由于A、D关于抛物线的对称轴(即y轴)对称,连接BD. 则BD与y轴的交点即为M点; 设直线BD的解析式为:y=kx+b(k≠0),则有: , 解得; ∴直线BD的解析式为y=x-2,点M(0,-2); (3)设BC与y轴的交点为N,则有N(0,-3); ∴MN=1,BN=1,ON=3; S△ABM=S梯形AONB-S△BMN-S△AOM=(1+2)×3-×2×2-×1×1=2; ∴S△PAD=4S△ABM=8; 由于S△PAD=AD•|yP|=8, 即|yP|=4; 当P点纵坐标为4时,x2-4=4, 解得x=±2, ∴P1(-2,4),P2(2,4); 当P点纵坐标为-4时,x2-4=-4, 解得x=0, ∴P3(0,-4); 故存在符合条件的P点,且P点坐标为:P1(-2,4),P2(2,4),P3(0,-4).
复制答案
考点分析:
相关试题推荐
如图,平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),抛物线经过A、O、B三点,连接OA、OB、AB,线段AB交y轴于点E.
(1)求点E的坐标;
(2)求抛物线的函数解析式;
(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连接ON、BN,当点F在线段OB上运动时,求△BON面积的最大值,并求出此时点N的坐标;
(4)连接AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.

manfen5.com 满分网 查看答案
如图,⊙O的半径OD经过弦AB(不是直径)的中点C,过AB的延长线上一点P作⊙O的切线PE,E为切点,PE∥OD;延长直径AG交PE于点H;直线DG交OE于点F,交PE于点K.
(1)求证:四边形OCPE是矩形;
(2)求证:HK=HG;
(3)若EF=2,FO=1,求KE的长.

manfen5.com 满分网 查看答案
在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为______km,a=______
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.

manfen5.com 满分网 查看答案
如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.
(1)求证:DE∥BF;
(2)若∠G=90°,求证:四边形DEBF是菱形.

manfen5.com 满分网 查看答案
如图,在直角坐标系中,O为坐标原点.已知反比例函数y=manfen5.com 满分网(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且△AOB的面积为manfen5.com 满分网
(1)求k和m的值;
(2)点C(x,y)在反比例函数y=manfen5.com 满分网的图象上,求当1≤x≤3时函数值y的取值范围;
(3)过原点O的直线l与反比例函数y=manfen5.com 满分网的图象交于P、Q两点,试根据图象直接写出线段PQ长度的最小值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.