满分5 > 初中数学试题 >

已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB...

已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.
(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;
(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.
①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;
②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断manfen5.com 满分网是否为定值?若是,请求出该定值;若不是,请说明理由.
manfen5.com 满分网
(1)首先分别连接OE、0F,由四边形ABCD是菱形,即可得AC⊥BD,BD平分∠ADC.AO=DC=BC,又由E、F分别为DC、CB中点,即可证得0E=OF=OA,则可得点O即为△AEF的外心; (2)①首先分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,即可求得∠IPJ的度数,又由点P是等边△AEF的外心,易证得△PIE≌△PJA,可得PI=PJ,即点P在∠ADC的平分线上,即点P落在直线DB上. ②当AE⊥DC时.△AEF面积最小,此时点E、F分别为DC、CB中点.连接BD、AC交于点P,由(1)可得点P即为△AEF的外心.由△GBP∽△MDP,即可为定值2. (1)证明:如图1,分别连接OE、0F, ∵四边形ABCD是菱形, ∴AC⊥BD,BD平分∠ADC.AD=DC=BC, ∴∠COD=∠COB=∠AOD=90°. ∠ADO=∠ADC=×60°=30°, 又∵E、F分别为DC、CB中点, ∴OE=CD,OF=BC,AO=AD, ∴0E=OF=OA, ∴点O即为△AEF的外心. (2)【解析】 ①猜想:外心P一定落在直线DB上. 证明:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J, ∴∠PIE=∠PJD=90°, ∵∠ADC=60°, ∴∠IPJ=360°-∠PIE-∠PJD-∠JDI=120°, ∵点P是等边△AEF的外心, ∴∠EPA=120°,PE=PA, ∴∠IPJ=∠EPA, ∴∠IPE=∠JPA, ∴△PIE≌△PJA, ∴PI=PJ, ∴点P在∠ADC的平分线上,即点P落在直线DB上. ②为定值2. 当AE⊥DC时.△AEF面积最小, 此时点E、F分别为DC、CB中点. 连接BD、AC交于点P,由(1) 可得点P即为△AEF的外心. 如图3.设MN交BC于点G, 设DM=x,DN=y(x≠0.y≠O),则CN=y-1, ∵BC∥DA, ∴△GBP≌△MDP. ∴BG=DM=x. ∴CG=1-x ∵BC∥DA, ∴△NCG∽△NDM, ∴, ∴, ∴x+y=2xy, ∴+=2, 即=2.
复制答案
考点分析:
相关试题推荐
如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1
(1)当a=-1,b=1时,求抛物线n的解析式;
(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;
(3)若四边形AC1A1C为矩形,请求出a,b应满足的关系式.

manfen5.com 满分网 查看答案
如图所示,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,manfen5.com 满分网
(1)求证:直线PB是⊙O的切线;
(2)求cos∠BCA的值.

manfen5.com 满分网 查看答案
某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到______元购物券,至多可得到______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案
某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).
(1)求y与x的函数关系式(不要求写出自变量x的取值范围);
(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求 出该方案所需费用.
查看答案
如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取manfen5.com 满分网=1.732,结果精确到1m)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.