满分5 > 初中数学试题 >

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C. (1)求...

如图所示,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.
(1)求A、B、C三点的坐标;
(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.

manfen5.com 满分网
(1)抛物线与x轴的交点,即当y=0,C点坐标即当x=0,分别令y以及x为0求出A,B,C坐标的值; (2)四边形ACBP的面积=△ABC+△ABP,由A,B,C三点的坐标,可知△ABC是直角三角形,且AC=BC,则可求出△ABC的面积,根据已知可求出P点坐标,可知AP的长度,以及点B到直线的距离,从而求出△ABP的面积,则就求出四边形ACBP的面积; (3)假设存在这样的点M,两个三角形相似,根据题意以及上两题可知,∠PAC∠和∠MGA是直角,只需证明或即可.设M点坐标,根据题中所给条件可求出线段AG,CA,MG,CA的长度,然后列等式,分情况讨论,求解. 【解析】 (1)令y=0, 得x2-1=0 解得x=±1, 令x=0,得y=-1 ∴A(-1,0),B(1,0),C(0,-1);(2分) (2)∵OA=OB=OC=1, ∴∠BAC=∠ACO=∠BCO=45°. ∵AP∥CB, ∴∠PAB=45°. 过点P作PE⊥x轴于E,则△APE为等腰直角三角形, 令OE=a,则PE=a+1, ∴P(a,a+1). ∵点P在抛物线y=x2-1上, ∴a+1=a2-1. 解得a1=2,a2=-1(不合题意,舍去). ∴PE=3(4分). ∴四边形ACBP的面积S=AB•OC+AB•PE =×2×1+×2×3=4;(6分) (3)假设存在 ∵∠PAB=∠BAC=45°, ∴PA⊥AC ∵MG⊥x轴于点G, ∴∠MGA=∠PAC=90° 在Rt△AOC中,OA=OC=1, ∴AC= 在Rt△PAE中,AE=PE=3, ∴AP=3(7分) 设M点的横坐标为m,则M(m,m2-1) ①点M在y轴左侧时,则m<-1. (ⅰ)当△AMG∽△PCA时,有. ∵AG=-m-1,MG=m2-1. 即 解得m1=-1(舍去)m2=(舍去). (ⅱ)当△MAG∽△PCA时有, 即. 解得:m=-1(舍去)m2=-2. ∴M(-2,3)(10分). ②点M在y轴右侧时,则m>1 (ⅰ)当△AMG∽△PCA时有 ∵AG=m+1,MG=m2-1 ∴ 解得m1=-1(舍去)m2=. ∴M(,). (ⅱ)当△MAG∽△PCA时有, 即. 解得:m1=-1(舍去)m2=4, ∴M(4,15). ∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似 M点的坐标为(-2,3),(,),(4,15).(13分)
复制答案
考点分析:
相关试题推荐
已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=manfen5.com 满分网
(1)求证:AM•MB=EM•MC;
(2)求EM的长;
(3)求sin∠EOB的值.

manfen5.com 满分网 查看答案
某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;
(2)设销售单价为每千克x元,月销售利润为y元,求y与x之间的函数关系式(不必写出自变量x的取值范围);
(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?
(4)商店要想月销售利润最大,销售单价应定为多少元?最大月销售利润是多少?
查看答案
如图,点C是线段BD的中点,在BD的同侧分别等边△ABC和等边△CDE,点F是DE的中点,BF分别交AC、CE于G、H两点.
(1)请写出图中各对相似三角形(相似比为1除外);
(2)求BG:GH:HF.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点A、B、C、P的坐标分别为(0,1)、(-1,0)、(1,0)、(-1,-1).
(1)求经过A、B、C三点的抛物线的表达式;
(2)以P为位似中心,将△ABC放大,使得放大后的△A1B1C1与△OAB对应线段的比为3:1,请在右图网格中画出放大后的△A1B1C1;(所画△A1B1C1与△ABC在点P同侧);
(3)经过A1、B1、C1三点的抛物线能否由(1)中的抛物线平移得到?请说明理由.
manfen5.com 满分网
查看答案
如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°.
(1)求B,D之间的距离;
(2)求C,D之间的距离.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.