满分5 > 初中数学试题 >

如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD. (1)判断△AB...

如图1,已知矩形ABED,点C是边DE的中点,且AB=2AD.
(1)判断△ABC的形状,并说明理由;
(2)保持图1中△ABC固定不变,绕点C旋转DE所在的直线MN到图2中(当垂线段AD、BE在直线MN的同侧),试探究线段AD、BE、DE长度之间有什么关系?并给予证明;
(3)保持图2中△ABC固定不变,继续绕点C旋转DE所在的直线MN到图3中的位置(当垂线段AD、BE在直线MN的异侧).试探究线段AD、BE、DE长度之间有什么关系?并给予证明.manfen5.com 满分网
(1)根据矩形的性质及勾股定理,即可判断△ABC的形状; (2)(3)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系. 【解析】 (1)△ABC是等腰直角三角形.理由如下: 在△ADC与△BEC中,AD=BE,∠D=∠E=90°,DC=EC, ∴△ADC≌△BEC(SAS), ∴AC=BC,∠DCA=∠ECB. ∵AB=2AD=DE,DC=CE, ∴AD=DC, ∴∠DCA=45°, ∴∠ECB=45°, ∴∠ACB=180°-∠DCA-∠ECB=90°. ∴△ABC是等腰直角三角形. (2)DE=AD+BE.理由如下: 在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC, ∴△ACD≌△CBE(AAS), ∴AD=CE,DC=EB. ∴DC+CE=BE+AD, 即DE=AD+BE. (3)DE=BE-AD.理由如下: 在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC, ∴△ACD≌△CBE(AAS), ∴AD=CE,DC=EB. ∴DC-CE=BE-AD, 即DE=BE-AD.
复制答案
考点分析:
相关试题推荐
某中学举行科技节活动,九年级的李老师将参加“趣味数学”知识竞赛活动的成绩做了统计分析,并制作成统计图表如下:
分数段频数频率
60≤x<70300.15
70≤x<80m0.45
80≤x<9060n
90≤x<100200.1
请根据以上统计表及如图提供的信息,解答下列问题:
(1)表中m和n所表示的数分别为:m=______,n=______
(2)请在图中,补全频数分布直方图;
(3)请问比赛成绩的中位数落在哪个分数段内?
(4)李老师准备从不低于90分的学生中选1人参加夏令营,那么成绩为92分的小明被选上的概率是多少?

manfen5.com 满分网 查看答案
邯郸市供电局的电力维修工甲、乙两人要到60千米远的A地进行电力抢修.甲骑摩托车先行,乙开抢修车载着所需材料稍后出发.
(1)若乙比甲晚出发20分钟,抢修车的速度是摩托车的1.5倍,且甲、乙两人同时到达,求摩托车的速度;
(2)若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到,则乙比甲最多晚出发多少小时?
查看答案
如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?
(结果精确到0.1cm,参考数据:manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2
(1)将△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1
(2)以图中的点O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2
(3)△A2B2C2的周长为______

manfen5.com 满分网 查看答案
已知x=1是方程x+2a=5的解,求(2a+1)(2a-1)-a(4a-1)的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.