满分5 > 初中数学试题 >

如图,P1是反比例函数y=(k>0)在第一象限图象上的一点,点A1的坐标为(2,...

如图,P1是反比例函数y=manfen5.com 满分网(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).
(1)当点P1的横坐标逐渐增大时,△P1OA1的面积将如何变化?
(2)若△P1OA1与△P2A1A2均为等边三角形,求此反比例函数的解析式及A2点的坐标.

manfen5.com 满分网
(1)设P1(a,b),根据反比例函数的图象性质,可知y随x的增大而减小.又△P1OA1的面积=×0A1×b=b.故当点P1的横坐标逐渐增大时,△P1OA1的面积将逐渐减小. (2)由于△P1OA1为等边三角形,作P1C⊥OA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y=图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2D⊥A1A2,垂足为D.设A1D=a,由于△P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标. 【解析】 (1)过P1作P1C⊥OA1,垂足为C, 设P1(a,b), ∵P1在第一象限, ∴△P1OA1的面积=×0A1×b=b. 又∵当k>0时,在每一个象限内,y随x的增大而减小. 故当点P1的横坐标逐渐增大时,△P1OA1的面积将逐渐减小. (2)因为△P1OA1为边长是2的等边三角形, 所以OC=1,P1C=2×=, 所以P1(1,). 代入y=,得k=, 所以反比例函数的解析式为y=. 作P2D⊥A1A2,垂足为D. 设A1D=a, 则OD=2+a,P2D=a, 所以P2(2+a,a). ∵P2(2+a,a)在反比例函数的图象上, ∴代入y=,得(2+a)•a=, 化简得a2+2a-1=0 解得:a=-1±. ∵a>0, ∴a=-1+.∴A1A2=-2+2, ∴OA2=OA1+A1A2=2, 所以点A2的坐标为(2,0).
复制答案
考点分析:
相关试题推荐
如图,泰州园博园中有一条人工河,河的两岸PQ、MN互相平行,河岸PQ上有一排间隔为50米的彩灯柱C、D、E、…,某人在河岸MN的A处测得∠DAN=21°,然后沿河岸走了175米到达B处,测得∠CBN=45°,求这条河的宽度.(参考数据:manfen5.com 满分网manfen5.com 满分网

manfen5.com 满分网 查看答案
如图,AB是⊙O的直径,C是BA延长线上的一点,CD与⊙O相切于点D,连接OD,四边形PQRS是矩形,其中点P、Q在半径OA上,点R在半径OD上,点S在⊙O上.已知CD=4,CO=5,PQ=2RQ,
(1)求manfen5.com 满分网的值;
(2)求矩形PQRS的面积.

manfen5.com 满分网 查看答案
有A、B两个口袋,A口袋中装有两个分别标有数字2,3的小球;B口袋中装有三个分别标有数字-1,4,-5的小球.小明先从A口袋中随机取出一个小球,用m表示所取球上的数字,再从B口袋中随机取出两个小球,用n表示所取球上的数字之和.
(1)用树状图法或列表法表示小明所取出的三个小球的所有可能结果;
(2)求manfen5.com 满分网的值是整数的概率.
查看答案
如图,F为正方形ABCD的对角线AC上一点,FE⊥AD于点E,M为CF的中点.
(1)求证:MB=MD;
(2)求证:ME=MB.

manfen5.com 满分网 查看答案
振兴中学某班的学生对本校学生会倡导的“抗震救灾,众志成城”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.下图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为3:4:5:8:6,又知此次调查中捐款25元和30元的学生一共42人.
(1)他们一共调查了多少人?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有1560名学生,估计全校学生捐款多少元?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.