满分5 > 初中数学试题 >

已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=,∠CAD=30...

已知:如图,△ABC内接于⊙O,点D在OC的延长线上,sinB=manfen5.com 满分网,∠CAD=30°.
(1)求证:AD是⊙O的切线;
(2)若OD⊥AB,BC=5,求AD的长.

manfen5.com 满分网
(1)连接OA,由于sinB=,那么可求∠B=30°,利用圆周角定理可求∠AOC=60°,而OA=OB,那么△AOC是等边三角形,从而有∠OAC=60°,易求∠OAD=90°,即AD是⊙O的切线; (2)由于OC⊥AB,OC是半径,利用垂径定理可知OC是AB的垂直平分线,那么CA=CB,而∠B=30°,则∠BAC=30°,于是有∠DAE=60°,∠D=30°,在Rt△ACE中,利用三角函数值可求AE,在Rt△ADE中利用30°的锐角所对的直角边等于斜边的一半,可求AD. 证明:连接OA, (1)∵sinB=, ∴∠B=30°, ∠AOC=60°, 又∵OA=OC, ∴△AOC是等边三角形, ∴∠OAC=60°, ∴∠OAD=60°+30°=90°, ∴AD是⊙O的切线; (2)∵OC⊥AB,OC是半径, ∴BE=AE, ∴OD是AB的垂直平分线, ∴∠DAE=60°,∠D=30°, 在Rt△ACE中,AE=cos30°×AC=, ∴在Rt△ADE中,AD=2AE=5.
复制答案
考点分析:
相关试题推荐
有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.
(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;
(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.
查看答案
在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园面积是荒地面积的一半,下面分别是小华与小芳的设计方案.同学们都认为小华的方案是正确的,但对小芳方案是否符合条件有不同意见,你认为小芳的方案符合条件吗?若不符合,请用方程的方法说明理由.
manfen5.com 满分网
查看答案
已知:如图,C为BE上一点,点A,D分别在BE两侧,AB∥ED,AB=CE,BC=ED.求证:AC=CD.

manfen5.com 满分网 查看答案
先化简,再求值:manfen5.com 满分网+manfen5.com 满分网,其中a=3.
查看答案
解方程:x2+4x+2=0.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.