如图,有一座大桥是靠抛物线型的拱形支撑的,它的桥面处于拱形中部(如我市的中山大桥就是这种模型).已知桥面在拱形之间的宽度CD为40m,桥面CD离拱形支撑的最高点O的距离为10m,且在正常水位时水面宽度AB为48m.
(1)建立如图所示的直角坐标系,求此抛物线的解析式;
(2)现有一辆载有救援物质的货车正以40km/h的速度必需经过此桥匀速开往乙地.当货车行驶到甲地时接到紧急通知:前方连降暴雨,造成水位以每小时0.3m的速度持续上涨(接到通知时水位已经比正常水位高出2m了,当水位到达桥面CD的高度时,禁止车辆通行).已知甲地距离此桥360km(桥长忽略不计),请问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度不得低于多少km/h?
考点分析:
相关试题推荐
如图,AB为量角器(半圆O)的直径,等腰直角△BCD的斜边BD交量角器边缘于点G,直角边CD切量角器于读数为60°的点E处(即弧AE的度数为60°),第三边交量角器边缘于点F处.
(1)求量角器在点G处的读数α(90°<α<180°);
(2)若AB=12cm,求阴影部分面积.
查看答案
如图,小明家住16楼,楼前有一条河.小明在阳台距离地面50米的A点(AD=50m)分别看向河的两岸(B点和C点),测得俯角分别是45°与30°,请你求出河宽是多少?(精确到0.1米)
查看答案
如图,在平行四边形ABCD中,点E,F分别在AB,CD上,连接AF,CE.请添加一个你认为合适的条件______,使△ADF≌△CBE,并给予证明.
查看答案
计算:
-(2011-
)
-6sin60°.
查看答案
过反比例函数图象上一点P
(1,2
n)作图象的切线(与图象只有一个交点的直线),交x轴于点A
1,过A
1作x轴的垂线交反比例函数图象于点P
1,过点P
1作图象的切线交x轴于点A
2,过A
2作x轴的垂线交反比例函数图象于点P
2,以此类推,可以找到无数个P点.
(1)当n=5时,属于整点(横纵坐标均为整数的点的点P有
个;
(2)当n=2011时,属于整点的点P有
个,最后一个整点P的坐标是
.
查看答案