满分5 > 初中数学试题 >

如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接A...

如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.
(1)线段AF和BE有怎样的大小关系?请证明你的结论;
(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,这时(1)中的结论还成立吗?作出判断并说明理由;
(3)若将图a中的△ABC绕点C旋转一定的角度,请你画出一个变换后的图形(草图即manfen5.com 满分网可),(1)中的结论还成立吗?作出判断不必说明理由;
(4)根据以上证明、说理、画图,归纳你的发现.
(1)根据题中所给的等边三角形的条件,两对边对应相等,有一个角都等于60°,变换这个60°的对应角,利用SAS证AF和BE所在的三角形全等; (2)方法同(1),利用SAS求证两个三角形全等,进而求解; (3)方法同(1)利用SAS证AF和BE所在的三角形全等; (4)根据前面得到的结论,AF和BE所在的三角形总是全等,那么AF恒等于BE. 【解析】 (1)AF=BE. 证明:在△AFC和△BEC中, ∵△ABC和△CEF是等边三角形, ∴AC=BC,CF=CE,∠ACF=∠BCE=60°, ∴△AFC≌△BEC. ∴AF=BE. (2)成立.理由:在△AFC和△BEC中, ∵△ABC和△CEF是等边三角形, ∴AC=BC,CF=CE,∠ACB=∠FCE=60°, ∴∠ACB-∠FCB=∠FCE-∠FCB, 即∠ACF=∠BCE.∴△AFC≌△BEC, ∴AF=BE. (3)此处图形不惟一,仅举几例. 如图,(1)中的结论仍成立. (4)根据以上证明、说明、画图,归纳如下: 如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C, 则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.
复制答案
考点分析:
相关试题推荐
如图,一条渔船某时刻在位置A观测灯塔B、C(灯塔B距离A处较近),两个灯塔恰好在北偏东65°45′的方向上,渔船向正东方向航行l小时45分钟之后到达D点,观测到灯塔B恰好在正北方向上,已知两个灯塔之间的距离是12海里,渔船的速度是16海里/时,又知在灯塔C周围18.6海里内有暗礁,问这条渔船按原来的方向继续航行,有没有触礁的危险?

manfen5.com 满分网 查看答案
manfen5.com 满分网温度与我们的生活息息相关,你仔细观察过温度计吗?如图是一个温度计实物示意图,左边的刻度是摄氏温度(℃),右边的刻度是华氏温度(℉),设摄氏温度为x(℃),华氏温度为y(℉),则y是x的一次函数.
(1)仔细观察图中数据,试求出y与x之间的函数表达式;
(2)当摄氏温度为零下15℃时,求华氏温度为多少?
查看答案
某校为了推动信息技术的发展,举行了电脑设计作品比赛,各班派学生代表参加,现将所有比赛成绩(得分取整数,满分为100分)进行处理然后分成五组,并绘制了频数分布直方图,请结合图中提供的信息,解答下列问题:
manfen5.com 满分网(1)参加比赛学生的总人数是多少?
(2)80.5~90.5这一分数段的频数、频率是多少?
(3)这次比赛成绩的中位数落在哪个分数段内?
(4)根据统计图,请你也提出一个问题,并做出回答.
查看答案
2004年,锦州市被国家评为“无偿献血先进城市”,医疗临床用血实现了100%来自公民自愿献血,无偿献血总量5.5t,居全省第三位.现有三个自愿献血者,两人血型为O型,一人血型为A型,若在三人中任意挑选一人献血,两年以后又从此三人中随意挑选一人献血,试求两次所抽血的血型均为O型的概率.(用列表法解答)
查看答案
某市有A,B,C,D四个大型超市,分别位于一条东西走向的平安大路两侧,如图所示,请建立适当的直角坐标系,并写出四个超市相应的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.