满分5 > 初中数学试题 >

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边...

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.
manfen5.com 满分网
(1)填空:如图1,AC=______
(1)根据勾股定理可得AC=BD==4;易知△ADC≌△BCD,利用四边形内角和是360°可得∠CDB=∠DCA=30°∵∠CAB=30°∴DC∥AB,∵AD=BC∴四边形ABCD是等腰梯形; (2)图中的三角形分为两类:30°,30°,120°;30°,60°,90度.按此找相似三角形即可; (3)过P作出△FBP的高.△FBP面积应等于FB×PK÷2,易得FB=AB-AF=8-k;则KB等于FB的一半,利用30°的正切值可求得FK的值.注意用t表示的线段应大于0. 【解析】 (1)4,4,等腰; (2)共有9对相似三角形. ①△DCE、△ABE与△ACD或△BDC两两相似, 分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对) ②△ABD∽△EAD,△ABD∽△EBC;(有2对) ③△BAC∽△EAD,△BAC∽△EBC;(有2对) 所以,一共有9对相似三角形. (3)由题意知,FP∥AE, ∴∠1=∠PFB, 又∵∠1=∠2=30°, ∴∠PFB=∠2=30°, ∴FP=BP 过点P作PK⊥FB于点K,则FK=BK=FB. ∵AF=t,AB=8, ∴FB=8-t,BK=(8-t). 在Rt△BPK中,PK=BK•tan∠2=(8-t)tan30°=(8-t). ∴△FBP的面积S=•FB•PK=(8-t)•(8-t), ∴S与t之间的函数关系式为: S=(8-t)2,或S=t2-t+, t的取值范围为:0≤t<8.
复制答案
考点分析:
相关试题推荐
如图,二次函数y=-x2+2x+m的图象与x轴的一个交点为B(-1,0),另一个交点为A,且与y轴交于点C.
(1)求m的值;
(2)求直线AC的函数解析式;
(3)该二次函数图象上有点D(x,y),使S△ABD=S△ABC,求点D坐标.

manfen5.com 满分网 查看答案
如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=manfen5.com 满分网∠CAB.
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=manfen5.com 满分网,求BC和BF的长.

manfen5.com 满分网 查看答案
如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为manfen5.com 满分网(即AB:BC=manfen5.com 满分网),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).

manfen5.com 满分网 查看答案
如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.
(1)求证:△ABD≌△ECB;
(2)若∠DBC=60°,BC=6,求AD的长.

manfen5.com 满分网 查看答案
某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台)与销售单价x(元)满足w=-2x+80,设销售这种台灯每天的利润为y(元).
(1)求y与x之间的函数关系式;
(2)当销售单价定为多少元时,每天的利润最大?最大利润是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.