满分5 > 初中数学试题 >

如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐...

manfen5.com 满分网如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=manfen5.com 满分网+bx+c经过B点,且顶点在直线x=manfen5.com 满分网上.
(1)求抛物线对应的函数关系式;
(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的前提下,若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
(1)已知了抛物线上A、B点的坐标以及抛物线的对称轴方程,可用待定系数法求出抛物线的解析式. (2)首先求出AB的长,将A、B的坐标向右平移AB个单位,即可得出C、D的坐标,再代入抛物线的解析式中进行验证即可. (3)根据C、D的坐标,易求得直线CD的解析式;那么线段MN的长实际是直线BC与抛物线的函数值的差,可将x=t代入两个函数的解析式中,得出的两函数值的差即为l的表达式,由此可求出l、t的函数关系式,根据所得函数的性质即可求出l取最大值时,点M的坐标. 【解析】 (1)∵抛物线y=+bx+c的顶点在直线x=上, ∴可设所求抛物线对应的函数关系式为y=+m(1分) ∵点B(0,4)在此抛物线上, ∴4=×+m ∴m=-(3分) ∴所求函数关系式为:y=-=-x+4(4分) (2)在Rt△ABO中,OA=3,OB=4, ∴AB==5 ∵四边形ABCD是菱形 ∴BC=CD=DA=AB=5(5分) ∴C、D两点的坐标分别是(5,4)、(2,0);(6分) 当x=5时,y=×52-×5+4=4 当x=2时,y=×22-×2+4=0 ∴点C和点D在所求抛物线上;(7分) (3)设直线CD对应的函数关系式为y=kx+b′, 则; 解得:; ∴y=x-(9分) ∵MN∥y轴,M点的横坐标为t, ∴N点的横坐标也为t; 则yM=-t+4,yN=t-,(10分) ∴l=yN-yM=t--(-t+4)=-+t-=-+ ∵-<0, ∴当t=时,l最大=,yM=-t+4=. 此时点M的坐标为(,).(12分)
复制答案
考点分析:
相关试题推荐
如图,BD为⊙O的直径,点A是弧BC的中点,AD交BC于E点,AE=2,ED=4.
(1)求证:△ABE∽△ABD;
(2)求tan∠ADB的值.

manfen5.com 满分网 查看答案
某商店购进一种商品,单价30元.试销中发现这种商品每天的销售量p(件)与每件的销售价x(元)满足关系:p=100-2x.若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?
查看答案
如图所示,小杨在广场上的A处正面观测一座楼房墙上的广告屏幕,测得屏幕下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该屏幕上端C处的仰角为45°.若该楼高为26.65m,小杨的眼睛离地面1.65m,广告屏幕的上端与楼房的顶端平齐.求广告屏幕上端与下端之间的距离.(manfen5.com 满分网≈1.732,结果精确到0.1m)

manfen5.com 满分网 查看答案
从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售量比为5:4:2:1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:
请根据以上信息解答问题:
(1)补全条形统计图;
(2)四种家电销售总量为______万台;
(3)为跟踪调查农户对这四种家电的使用情况,从已销售的家电中随机抽取一台家电,求抽到冰箱的概率.

manfen5.com 满分网 查看答案
如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.
(1)求证:△ADE≌△ABF;
(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.