如图,直线y=k
1x+b与反比例函数
(x>0)的图象交于A(1,6),B(a,3)两点.
(1)求k
1、k
2的值.
(2)直接写出
时x的取值范围;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.
考点分析:
相关试题推荐
如图,抛物线y=ax
2-5x+4a与x轴相交于点A、B,且过点C(5,4).
(1)求点A和点B的坐标;
(2)求a的值和该抛物线顶点P的坐标;
(3)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.
查看答案
如图,某建筑物BC上有一旗杆AB,小明在与BC相距12m的F处,由E点观测到旗杆顶部A的仰角为52°、底部B的仰角为45°,小明的观测点与地面的距离EF为1.6m.
(1)求建筑物BC的高度;
(2)求旗杆AB的高度.
(结果精确到0.1m.参考数据:
≈1.41,sin52°≈0.79,tan52°≈1.28)
查看答案
某电视台组织的一个知识竞赛栏目中,预赛有16道题,预赛的规则是:答对一题得6分,不答或答错一题扣2分,得分超过60分的可以进入决赛,那么选手要想进入决赛至少应答对多少道题?
查看答案
今年起,兰州市将体育考试正式纳入中考考查科目之一,其等级作为考生录取的重要依据之一.某中学为了了解学生体育活动情况,随即调查了720名初二学生,调查内容是:“每天锻炼是否超过1小时及未超过1小时的原因”,利用所得的数据制成了扇形统计图和频数分布直方图.根据图示,解答下列问题:
(1)若在被调查的学生中随机选出一名学生测试其体育成绩,选出的是“每天锻炼超过1小时”的学生的概率是多少?
(2)“没时间”锻炼的人数是多少?并补全频数分布直方图;
(3)2011年兰州市区初二学生约为2.4万人,按此调查,可以估计2011年兰州市区初二学生中每天锻炼未超过1小时的学生约有多少万人?
(4)请根据以上结论谈谈你的看法.
查看答案
如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37°,求∠D的度数.
查看答案