城市规划期间,欲拆除一电线杆AB(如图),已知距电线杆AB水平距离14m的D处有一大坝,背水坝CD的坡度i=2:1,坝高CF为2m,在坝顶C处测得杆顶A的仰角为30°,D、E之间是宽为2m的人行道,试问在拆除电线杆AB时,为确保行人安全,是否需要将此人行道封上,请说明理由.(在地面上,以点B为圆心,以AB长为半径的圆形区域为危险区域)(
≈1.732,
≈1.414)
考点分析:
相关试题推荐
本题为选做题,从甲乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲题:已知关于x的一元二次方程mx
2-(2m-1)x+m-2=0(m>0).
(1)证明:这个方程有两个不相等的实根;
(2)如果这个方程的两根分别为x
1,x
2,且(x
1-5)(x
2-5)=5m,求m的值.
乙题:如图,在△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作AC的垂线,垂足为E.
(1)证明:BD=DC;
(2)DE是否是⊙O的切线?若是,请给出证明;若不是,请说明理由.
我选做的是______.
查看答案
如图所示,A、B两个旅游点从2001年至2005年“五•一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:
(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?
(2)求A、B两个旅游点从2001到2005年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;
(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5-
.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?
查看答案
已知一次函数y=x+2与反比例函数y=
,其中一次函数y=x+2的图象经过点P(k,5).
(1)试确定反比例函数的表达式;
(2)若点Q是上述一次函数与反比例函数图象在第三象限的交点,求点Q的坐标.
查看答案
如图是由边长为1的小正方形组成的方格图.
(1)请在方格图中建立平面直角坐标系,使点A的坐标为(3,3),点B的坐标为(-1,0);
(2)在x轴上画点C,使△ABC是以AB为腰的等腰三角形,并写出所有满足条件的点C的坐标.(不写作法,保留作图痕迹)
查看答案
如图,在四边形ABCD中,已知AB=CB,AD=CD.求证:∠A=∠C.
查看答案