满分5 > 初中数学试题 >

已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点...

已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x-2经过A、C两点,且AB=2.
(1)求抛物线的解析式;
(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=manfen5.com 满分网,当t为何值时,s有最小值,并求出最小值.
(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC相似;若存在,求t的值;若不存在,请说明理由.
manfen5.com 满分网
(1)首先根据直线AC的解析式确定点A、C的坐标,已知AB的长,进一步能得到点B的坐标;然后由待定系数法确定抛物线的解析式. (2)根据所给的s表达式,要解答该题就必须知道ED、OP的长;BP、CE长易知,那么由OP=OB-BP求得OP长,由∠CED的三角函数值可得到ED的长,再代入s的表达式中可得到关于s、t的函数关系式,结合函数的性质即可得到s的最小值. (3)首先求出BP、BD的长,若以P、B、D为顶点的三角形与△ABC相似,已知的条件是公共角∠OBC,那么必须满足的条件是夹公共角的两组对应边成比例,分两种情况讨论即可. 【解析】 (1)由直线:y=x-2知:A(2,0)、C(0,-2); ∵AB=2,∴OB=OA+AB=4,即 B(4,0). 设抛物线的解析式为:y=a(x-2)(x-4),代入C(0,-2),得: a(0-2)(0-4)=-2,解得 a=- ∴抛物线的解析式:y=-(x-2)(x-4)=-x2+x-2. (2)在Rt△OBC中,OB=4,OC=2,则 tan∠OCB=2; ∵CE=t,∴DE=2t; 而 OP=OB-BP=4-2t; ∴s===(0<t<2), ∴当t=1时,s有最小值,且最小值为 1. (3)在Rt△OBC中,OB=4,OC=2,则 BC=2; 在Rt△CED中,CE=t,ED=2t,则 CD=t; ∴BD=BC-CD=2-t; 以P、B、D为顶点的三角形与△ABC相似,已知∠OBC=∠PBD,则有两种情况: ①=⇒=,解得 t=; ②=⇒=,解得 t=; 综上,当t=或时,以P、B、D为顶点的三角形与△ABC相似.
复制答案
考点分析:
相关试题推荐
某私营服装厂根据2011年市场分析,决定2012年调整服装制作方案,准备每周(按120工时计算)制作西服、休闲服、衬衣共360件,且衬衣至少60件.已知每件服装的收入和所需工时如下表:
服装名称西服休闲服衬衣
工时/件manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
收入(百元)/件321
设每周制作西服x件,休闲服y件,衬衣z件.
(1)请你分别从件数和工时数两个方面用含有x,y的代数式表示衬衣的件数z.
(2)求y与x之间的函数关系式.
(3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?
查看答案
如图,梯形ABCD是等腰梯形,且AD∥BC,O是腰CD的中点,以CD长为直径作圆,交BC于E,过E作EH⊥AB于H.EH=manfen5.com 满分网CD,
(1)求证:OE∥AB;
(2)求证:AB是⊙O的切线;
(3)若BE=4BH,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
标有-3,-2,4的三张不透明的卡片,除正面写有不同的数字外,其余的值都相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记为一次函数解析式y=kx+b的k值,第二次从余下的两张卡片中再抽取一张,上面标有的数字记为一次函数解析式的b值.
(1)写出k为负数的概率;
(2)求一次函数y=kx+b的图象不经过第一象限的概率.(用树状图或列举法求解)
查看答案
关于x的一元二次方程x2-(m-3)x-m2=0.
(1)证明:方程总有两个不相等的实数根;
(2)设这个方程的两个实数根为x1,x2,且|x1|=|x2|-2,求m的值及方程的根.
查看答案
小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,试求BD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.