满分5 > 初中数学试题 >

如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠,使...

manfen5.com 满分网如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠,使点B落在D处,AD交OC于E.
(1)求OE的长;
(2)求过O,D,C三点抛物线的解析式;
(3)若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t(秒)为何值时,直线PF把△FAC分成面积之比为1:3的两部分.
(1)已知四边形OABC是矩形,证明△CDE≌△AOE推出OE2+OA2=(AD-DE)2求出OE. (2)本题要借助辅助线的帮助,证明△DGE≌△CDE.根据线段比求出DG,EG以及点D的坐标.列出解析式求出a,b的值. (3)设直线AC的解析式为y=kx+b,把顶点坐标代入求出k,b.证明△AMH∽△AOC推出m的值. 【解析】 (1)∵四边形OABC是矩形, ∴∠CDE=∠AOE=90°,OA=BC=CD. 又∵∠CED=∠OEA, ∴△CDE≌△AOE. ∴OE=DE. ∴OE2+OA2=(AD-DE)2, 即OE2+42=(8-OE)2, 解之,得OE=3. (2)EC=8-3=5.如图,过D作DG⊥EC于G, ∴△DGE∽△CDE. ∴,. ∴DG=,EG=. ∴D(. 因O点为坐标原点, 故可设过O,C,D三点抛物线的解析式为y=ax2+bx. ∴ 解之,得 (3)∵抛物线的对称轴为x=4, ∴其顶点坐标为. 设直线AC的解析式为y=kx+b, 则解之,得 ∴. 设直线FP交直线AC于H(m,m-4),过H作HM⊥OA于M. ∴△AMH∽△AOC. ∴HM:OC=AH:AC. ∵S△FAH:S△FHC=1:3或3:1, ∴AH:HC=1:3或3:1, ∴HM:OC=AH:AC=1:4或3:4. ∴HM=2或6, 即m=2或6. ∴H1(2,-3),H2(6,-1). 直线FH1的解析式为y=x-. 当y=-4时,x=. 直线FH2的解析式为. 当y=-4时,x=. ∴当t=秒或秒时, 直线FP把△FAC分成面积之比为1:3的两部分.
复制答案
考点分析:
相关试题推荐
如图,直线y=-manfen5.com 满分网x+6分别与x轴、y轴交于A、B两点;直线y=manfen5.com 满分网x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
(1)求点C的坐标.
(2)当0<t<5时,求S与t之间的函数关系式.
(3)求(2)中S的最大值.
(4)当t>0时,直接写出点(4,manfen5.com 满分网)在正方形PQMN内部时t的取值范围.
参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(manfen5.com 满分网).

manfen5.com 满分网 查看答案
如图,直角坐标系中,已知两点O(0,0),A(2,0),点B在第一象限且△OAB为正三角形,△OAB的外接圆交y轴的正半轴于点C,过点C的圆的切线交x轴于点D.
(1)求B,C两点的坐标;
(2)求直线CD的函数解析式;
(3)设E,F分别是线段AB,AD上的两个动点,且EF平分四边形ABCD的周长.试探究:△AEF的最大面积.

manfen5.com 满分网 查看答案
两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.
manfen5.com 满分网
(2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.
manfen5.com 满分网
(3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,请你求出sinα的值.
manfen5.com 满分网
查看答案
已知双曲线y=manfen5.com 满分网与直线y=manfen5.com 满分网相交于A、B两点.第一象限上的点M(m,n)(在A点左侧)是双曲线y=manfen5.com 满分网上的动点.过点B作BD∥y轴交x轴于点D.过N(0,-n)作NC∥x轴交双曲线y=manfen5.com 满分网于点E,交BD于点C.
(1)若点D坐标是(-8,0),求A、B两点坐标及k的值;
(2)若B是CD的中点,四边形OBCE的面积为4,求直线CM的解析式;
(3)设直线AM、BM分别与y轴相交于P、Q两点,且MA=pMP,MB=qMQ,求p-q的值.

manfen5.com 满分网 查看答案
汶川地震发生后,全国人民抗震救灾,众志成城.某地政府急灾民之所需,立即组织12辆汽车,将A、B、C三种救灾物资共82吨一次性运往灾区,假设甲、乙、丙三种车型分别运载A、B、C三种物资.根据下表提供的信息解答下列问题:
车型
汽车运载量(吨/辆)5810
(1)设装运A、B品种物资的车辆数分别为x、y,试用含x的代数式表示y;
(2)据(1)中的表达式,试求A、B、C三种物资各几吨.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.