满分5 > 初中数学试题 >

已知,点P是正方形ABCD内的一点,连PA、PB、PC. (1)将△PAB绕点B...

已知,点P是正方形ABCD内的一点,连PA、PB、PC.
(1)将△PAB绕点B顺时针旋转90°到△P′CB的位置(如图1).
①设AB的长为a,PB的长为b(b<a),求△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积;
②若PA=2,PB=4,∠APB=135°,求PC的长;
(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

manfen5.com 满分网
(1)△PAB旋转到△P′CB的过程中边PA所扫过区域(图1中阴影部分)的面积实际是大扇形OAC与小扇形BPP′的面积差,且这两个扇形的圆心角同为90度; (2)连接PP′,证△PBP′为等腰直角三角形,从而可在Rt△PP′C中,用勾股定理求得PC=6; (3)将△PAB绕点B顺时针旋转90°到△P′CB的位置,由勾股逆定理证出∠P′CP=90°,再证∠BPC+∠APB=180°,即点P在对角线AC上. 【解析】 (1)①S阴影=S扇形ABC+S△BP′C-S扇形PBP′-S△ABP =S扇形ABC-S扇形PBP′ =, =(a2-b2); ②连接PP′, 根据旋转的性质可知: BP=BP′,∠PBP′=90°; 即:△PBP′为等腰直角三角形, ∴∠BPP′=45°, ∵∠BPA=∠BP′C=135°,∠BP′P=45°, ∴∠BPA+∠BPP′=180°, 即A、P、P′共线, ∴∠PP′C=135°-45°=90°; 在Rt△PP′C中,PP′=4,P′C=PA=2,根据勾股定理可得PC=6. (2)将△PAB绕点B顺时针旋转90°到△P′CB的位置,连接PP′. 同(1)①可知:△BPP′是等腰直角三角形,即PP′2=2PB2; ∵PA2+PC2=2PB2=PP′2, ∴PC2+P′C2=PP′2, ∴∠P′CP=90°; ∵∠PBP′=∠PCP′=90°,在四边形BPCP′中,∠BP′C+∠BPC=180°; ∵∠BPA=∠BP′C, ∴∠BPC+∠APB=180°,即点P在对角线AC上.
复制答案
考点分析:
相关试题推荐
如图,已知一次函数y=kx+b的图象交反比例函数y=manfen5.com 满分网(x>0)的图象于点A、B,交x轴于点C.
(1)求m的取值范围;
(2)若点A的坐标是(2,-4),且manfen5.com 满分网=manfen5.com 满分网,求m的值和一次函数的解析式.

manfen5.com 满分网 查看答案
青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处观察羊羊们时,发现懒洋洋在大树底下睡懒觉,此时,测得懒洋洋所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=40米,若灰太狼以5m/s的速度从城堡底部D处出发,几秒种后能抓到懒羊羊?(结果精确到个位).

manfen5.com 满分网 查看答案
下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的统计图表如下:
比赛项目票价(张/元)
足球1000
男篮800
乒乓球x
依据上列图表,回答下列问题:
(1)其中观看足球比赛的门票有______张;观看乒乓球比赛的门票占全部门票的______%;
(2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地完全相同且充分洗匀),问员工小华抽到男篮门票的概率是______
(3)若购买乒乓球门票的总款数占全部门票总款数的manfen5.com 满分网,求每张乒乓球门票的价格.

manfen5.com 满分网 查看答案
如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.
求证:
(1)△AFD≌△CEB;
(2)四边形ABCD是平行四边形.

manfen5.com 满分网 查看答案
解方程:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.