满分5 > 初中数学试题 >

如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在...

manfen5.com 满分网如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的对称轴;
(2)写出A,B,C三点的坐标并求抛物线的解析式;
(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.
(1)根据抛物线的解析式,利用对称轴公式,可直接求出其对称轴. (2)令x=0,可求出C点坐标,由BC∥x轴可知B,C关于抛物线的对称轴对称,可求出B点坐标,根据AC=BC可求出A点坐标. (3)分三种情况讨论: ①以AB为腰且顶角为∠A,先求出AB的值,再利用等腰三角形的性质结合勾股定理求出P1N的长,即可求出P1的坐标; ②以AB为腰且顶角为角B,根据MN的长和MP2的长,求出P2的纵坐标,已知其横坐标,可得其坐标; ③以AB为底,顶角为角P时,依据Rt△P3CK∽Rt△BAQ即可求出OK和P3K的长,可得P3坐标. 【解析】 (1)抛物线的对称轴x=-=;(2分) (2)由抛物线y=ax2-5ax+4可知C(0,4),对称轴x=-=, ∴BC=5,B(5,4),又AC=BC=5,OC=4, 在Rt△AOC中,由勾股定理,得AO=3, ∴A(-3,0)B(5,4)C(0,4)(5分) 把点A坐标代入y=ax2-5ax+4中, 解得a=-,(6) ∴y=x2+x+4.(7分) (3)存在符合条件的点P共有3个.以下分三类情形探索. 设抛物线对称轴与x轴交于N,与CB交于M. 过点B作BQ⊥x轴于Q, 易得BQ=4,AQ=8,AN=5.5,BM=. ①以AB为腰且顶角为角A的△PAB有1个:△P1AB. ∴AB2=AQ2+BQ2=82+42=80(8分) 在Rt△ANP1中,P1N====, ∴P1(,-).(9分) ②以AB为腰且顶角为角B的△PAB有1个:△P2AB. 在Rt△BMP2中MP2== = =,(10分) ∴P2=(,).(11分) ③以AB为底,顶角为角P的△PAB有1个,即△P3AB. 画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C. 过点P3作P3K垂直y轴,垂足为K, ∵∠CP3K=∠ABQ,∠CKP3=∠AQB, ∴Rt△P3CK∽Rt△BAQ. ∴==. ∵P3K=2.5 ∴CK=5于是OK=1,(13分) ∴P3(2.5,-1).(14分)
复制答案
考点分析:
相关试题推荐
如图,△ABC是⊙O的内接三角形,AC=BC,D为⊙O中manfen5.com 满分网上一点,延长DA至点E,使CE=CD.
(1)求证:AE=BD;
(2)若AC⊥BC,求证:manfen5.com 满分网

manfen5.com 满分网 查看答案
某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.
(1)用“列表法”或“树状图法”表示所有可能出现的结果;
(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?
查看答案
如图,四边形ABCD、DEFG都是正方形,连接AE,CG.
(1)求证:AE=CG;
(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.

manfen5.com 满分网 查看答案
如图,已知A(-4,2)、B(n,-4)是一次函数y=kx+b的图象与反比例函数manfen5.com 满分网的图象的两个交点.
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.

manfen5.com 满分网 查看答案
在“5•12”汶川大地震3周年之际,宜宾市A,B两个蔬菜基地决定向汶川C,D两个乡镇调运新鲜蔬菜.已知A蔬菜基地有蔬菜220吨,B蔬菜基地有蔬菜280吨,且得知C镇需蔬菜240吨,D镇需蔬菜260吨,现将A,B两个蔬菜基地的蔬菜全部调往C,D两个乡镇,从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为X吨.
(1)设A,B两个蔬菜基地的总运费为W元,写出W与X之间的函数关系式;
(2)求总运费最小的调运方案.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.