满分5 > 初中数学试题 >

如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连接AB,取A...

如图,在平面直角坐标系中,点A(0,6),点B是x轴上的一个动点,连接AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.过点B作x轴的垂线交直线AC于点D.设点B坐标是(t,0).
(1)当t=4时,求直线AB的解析式;
(2)当t>0时,用含t的代数式表示点C的坐标及△ABC的面积;
(3)是否存在点B,使△ABD为等腰三角形?若存在,请求出所有符合条件的点B的坐标;若不存在,请说明理由.
manfen5.com 满分网
(1)当t=4时,B(4,0),设直线AB的解析式为y=kx+b.把A(0,6),B(4,0)代入解析式即可求出未知数的值,从而求出其解析式; (2)过点C作CE⊥x轴于点E,由∠AOB=∠CEB=90°,∠ABO=∠BCE,得△AOB∽△BEC.即===,BE=AO=3,CE=OB=故点C的坐标为(t+3,).由于AB⊥BC,AB=2BC,∴S△ABC=AB•BC=BC2.在Rt△ABC中,由勾股定理得BC2=CE2+BE2=t2+9,即S△ABC=t2+9. (3)①当t≥0时Ⅰ,若AD=BD.由于BD∥y轴,故∠OAB=∠ABD,∠BAD=∠ABD,所以∠OAB=∠BAD.因为∠AOB=∠ABC,所以△ABO∽△ACB,故==,即=,∴t=3,即B(3,0). Ⅱ.若AB=AD.延长AB与CE交于点G,由于BD∥CG∴AG=AC过点A画AH⊥CG于H.CH=HG=CG,由△AOB∽△GEB, 得=,故GE=.由于HE=AO=6,CE=,t2-24t-36=0,解得:t=12±6.因为t≥0,所以t=12+6,即B(12+6,0). Ⅲ.由已知条件可知,当0≤t<12时,∠ADB为锐角,故BD≠AB.当t≥12时,BD≤CE<BC<AB.故当t≥0时,不存在BD=AB的情况. ②当-3≤t<0时,如图,∠DAB是钝角.设AD=AB过点C分别作CE⊥x轴,CF⊥y轴于点E,点F.可求得点C的坐标为(t+3,), ∴CF=OE=t+3,AF=6-,由BD∥y轴,AB=AD得,∠BAO=∠ABD,∠FAC=∠BDA,∠ABD=∠ADB故∠BAO=∠FAC, 又∵∠AOB=∠AFC=90°,∴△AOB∽△AFC,∴=,求得t的关系式t2-24t-36=0,解得:t=12±6.因为-3≤t<0,所以t=12-6,即B(12-6,0). ③当t<-3时,如图,∠ABD是钝角.设AB=BD,过点C分别作CE⊥x轴,CF⊥y轴于点E,点F,可求得点C的坐标(t+3,),故CF=-(t+3),AF=6-,由于AB=BD,故∠D=∠BAD.又因为BD∥y轴,故∠D=∠CAF,∠BAC=∠CAF.又因为∠ABC=∠AFC=90°,AC=AC,所以△ABC≌△AFC,故AF=AB,CF=BC,∴AF=2CF,即6-=-2(t+3),解得:t=-8,即B(-8,0). 【解析】 (1)当t=4时,B(4,0), 设直线AB的解析式为y=kx+b. 把A(0,6),B(4,0)代入得: , 解得:, ∴直线AB的解析式为:y=-x+6. (2)过点C作CE⊥x轴于点E, 由∠AOB=∠CEB=90°,∠ABO=∠BCE,得△AOB∽△BEC. ∴===, ∴BE=AO=3,CE=OB=, ∴点C的坐标为(t+3,). 方法一: S梯形AOEC=OE•(AO+EC)=(t+3)(6+)=t2+t+9, S△AOB=AO•OB=×6•t=3t, S△BEC=BE•CE=×3×=t, ∴S△ABC=S梯形AOEC-S△AOB-S△BEC =t2+t+9-3t-t =t2+9. 方法二: ∵AB⊥BC,AB=2BC, ∴S△ABC=AB•BC=BC2. 在Rt△ABC中,BC2=CE2+BE2=t2+9, 即S△ABC=t2+9. (3)存在,理由如下: ①当t≥0时, Ⅰ.若AD=BD, 又∵BD∥y轴, ∴∠OAB=∠ABD,∠BAD=∠ABD, ∴∠OAB=∠BAD, 又∵∠AOB=∠ABC, ∴△ABO∽△ACB, ∴==, ∴=, ∴t=3,即B(3,0). Ⅱ.若AB=AD. 延长AB与CE交于点G, 又∵BD∥CG, ∴AG=AC, 过点A画AH⊥CG于H. ∴CH=HG=CG, 由△AOB∽△GEB, 得=, ∴GE=. 又∵HE=AO=6,CE=, ∴+6=×(+), ∴t2-24t-36=0, 解得:t=12±6.因为t≥0, 所以t=12+6,即B(12+6,0). Ⅲ.由已知条件可知,当0≤t<12时,∠ADB为锐角,故BD≠AB. 当t≥12时,BD≤CE<BC<AB. ∴当t≥0时,不存在BD=AB的情况. ②当-3≤t<0时,如图,∠DAB是钝角.设AD=AB 过点C分别作CE⊥x轴,CF⊥y轴于点E,点F. 可求得点C的坐标为(t+3,), ∴CF=OE=t+3,AF=6-, 由BD∥y轴,AB=AD得, ∠BAO=∠ABD,∠FAC=∠BDA,∠ABD=∠ADB, ∴∠BAO=∠FAC, 又∵∠AOB=∠AFC=90°, ∴△AOB∽△AFC, ∴=, ∴=, ∴t2-24t-36=0, 解得:t=12±6.因为-3≤t<0, 所以t=12-6,即B(12-6,0). ③当t<-3时,如图,∠ABD是钝角.设AB=BD, 过点C分别作CE⊥x轴,CF⊥y轴于点E,点F, 可求得点C的坐标为(t+3,), ∴CF=-(t+3),AF=6-, ∵AB=BD, ∴∠D=∠BAD. 又∵BD∥y轴, ∴∠D=∠CAF, ∴∠BAC=∠CAF. 又∵∠ABC=∠AFC=90°,AC=AC, ∴△ABC≌△AFC, ∴AF=AB,CF=BC, ∴AF=2CF,即6-=-2(t+3), 解得:t=-8,即B(-8,0). 综上所述,存在点B使△ABD为等腰三角形, 此时点B坐标为:B1(3,0),B2(12+6,0),B3(12-6,0),B4(-8,0).
复制答案
考点分析:
相关试题推荐
(1)动手操作:
如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点c'处,折痕为EF,若∠ABE=20°,那么∠EFC'的度数为______
(2)观察发现:
小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.
manfen5.com 满分网
(3)实践与运用:
将矩形纸片ABCD 按如下步骤操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重合,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF的大小.
manfen5.com 满分网
查看答案
某个体小服装准备在夏季来临前,购进甲、乙两种T恤,在夏季到来时进行销售.两种T恤的相关信息如下表:
 品牌甲  乙
 进价(元/件) 35 70
 售价(元/件) 65 110
根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:
(1)该店有哪几种进货方案?
(2)该店按哪种方案进货所获利润最大,最大利润是多少?
(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.
查看答案
在结束了380课时初中阶段数学内容的教学后,唐老师计划安排60课时用于总复习,根据数学内容所占课时比例,绘制如下统计图表(图1~图3),请根据图表提供的信息,回答下列问题:
manfen5.com 满分网manfen5.com 满分网
(1)图1中“统计与概率”所在扇形的圆心角为______度;
(2)图2、3中的a=______,b=______
(3)在60课时的总复习中,唐老师应安排多少课时复习“数与代数”内容?
查看答案
定义:如图,若双曲线manfen5.com 满分网(k>0)与它的其中一条对称轴y=x相交于两点A,B,则线段AB的长称为双曲线manfen5.com 满分网(k>0)的对径.
(1)求双曲线manfen5.com 满分网的对径;
(2)若某双曲线manfen5.com 满分网(k>0)的对径是manfen5.com 满分网.求k的值.

manfen5.com 满分网 查看答案
如图,在一次数学课外活动中,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向,办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离(结果精确到0.1米).(供选用的数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.