满分5 > 初中数学试题 >

如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=...

如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
(1)△EFG的边长是______(用含有x的代数式表示),当x=2时,点G的位置在______
(2)若△EFG与梯形ABCD重叠部分面积是y,求:
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
(3)探求(2)中得到的函数y在x取含何值时,存在最大值,并求出最大值.manfen5.com 满分网
(1)根据等边三角形的三边相等,则△EFG的边长是点E移动的距离;根据等边三角形的三线合一和F点移动速度是E点移动速度的2倍,即可分析出BF=4,此时等边三角形的边长是2,则点G和点D重合; (2)①当0<x≤2时,重叠部分的面积即为等边三角形的面积; ②当2<x≤6时,分两种情况:当2<x<3时和当3≤x≤6时,进行计算; (3)分别求得(2)中每一种情况的最大值,再进一步比较取其中的最大值即可. 【解析】 (1)∵点E、F同时从B点出发,沿射线BC向右匀速移动,且F点移动速度是E点移动速度的2倍, ∴BF=2BE=2x, ∴EF=BF-BE=2x-x=x, ∴△EFG的边长是x; 过D作DH⊥BC于H,得矩形ABHD及直角△CDH,连接DE、DF. 在直角△CDH中,∵∠C=30°,CH=BC-AD=3, ∴DH=CH•tan30°=3×=. 当x=2时,BE=EF=2, ∵△EFG是等边三角形,且DH⊥BC交点H, ∴EH=HF=1 ∴DE=DF==2, ∴△DEF是等边三角形, ∴点G的位置在D点. 故答案为x,D点; (2)①当0<x≤2时,△EFG在梯形ABCD内部,所以y=x2; ②分两种情况: Ⅰ.当2<x<3时,如图1,点E、点F在线段BC上, △EFG与梯形ABCD重叠部分为四边形EFNM, ∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6. ∵在Rt△NMG中,∠G=60°,GN=3x-6, ∴GM=(3x-6), 由勾股定理得:MN=(3x-6), ∴S△GMN=×GM×MN=×(3x-6)×(3x-6)=(3x-6)2, 所以,此时y=x2-(3x-6)2=; Ⅱ.当3≤x≤6时,如图2,点E在线段BC上,点F在射线CH上, △EFG与梯形ABCD重叠部分为△ECP, ∵EC=6-x, ∴y=(6-x)2=; (3)当0<x≤2时, ∵y=x2,在x>0时,y随x增大而增大, ∴x=2时,y最大=; 当2<x<3时,∵y=,在x=时,y最大=; 当3≤x≤6时,∵y=,在x<6时,y随x增大而减小, ∴x=3时,y最大=. 综上所述:当x=时,y最大=.
复制答案
考点分析:
相关试题推荐
阅读下列材料:
小贝遇到一个有趣的问题:在矩形ABCD中,AD=8cm,AB=6cm.现有一动点P按下列方式在矩形内运动:它从A点出发,沿着AB边夹角为45°的方向作直线运动,每次碰到矩形的一边,就会改变运动方向,沿着与这条边夹角为45°的方向作直线运动,并且它一直按照这种方式不停地运动,即当P点碰到BC边,沿着BC边夹角为45°的方向作直线运动,当P点碰到CD边,再沿着与CD边夹角为45°的方向作直线运动,…,如图1所示,
manfen5.com 满分网
问P点第一次与D点重合前与边相碰几次,P点第一次与D点重合时所经过的路径的总长是多少.小贝的思考是这样开始的:如图2,将矩形ABCD沿直线CD折叠,得到矩形A1B1CD,由轴对称的知识,发现P2P3=P2E,P1A=P1E.
请你参考小贝的思路解决下列问题:
(1)P点第一次与D点重合前与边相碰______次;P点从A点出发到第一次与D点重合时所经过的路径的总长是______
查看答案
在一条直线上依次有A、B、C三个港口,甲、乙两船同时分别从A、B港口出发,沿直线匀速驶向C港,最终达到C港.设甲、乙两船行驶x(h)后,与B港的距离分别为y1、y2(km),y1、y2与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为______km,a=______
(2)求图中点P的坐标,并解释该点坐标所表示的实际意义;
(3)若两船的距离不超过10km时能够相互望见,求甲、乙两船可以相互望见时x的取值范围.

manfen5.com 满分网 查看答案
市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级非常了解比较了解基本了解不太了解
频数40120364
频率0.2m0.180.02
(1)本次问卷调查取样的样本容量为______,表中的m值为______
(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数,并补全扇形统计图;
(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?


manfen5.com 满分网 查看答案
图①、图②均为7×6的正方形网格,点A、B、C在格点上.
(1)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形.(画一个即可)
(2)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形.(画一个即可)manfen5.com 满分网
查看答案
如图,四边形ABCD是平行四边形,△AB′C和△ABC关于AC所在的直线对称,AD和B′C相交于点O,连接BB′.
(1)请直接写出图中所有的等腰三角形(不添加字母);
(2)求证:△AB′O≌△CDO.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.