满分5 > 初中数学试题 >

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(...

如图,已知抛物线C1:y=a(x+2)2-5的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.
(1)求P点坐标及a的值;
(2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式;
(3)如图(2),点Q是x轴正半轴上一点,将抛物线C1绕点Q旋转180°后得到抛物线C4.抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、F为顶点的三角形是直角三角形时,求点Q的坐标.
manfen5.com 满分网
(1)由抛物线C1:y=a(x+2)2-5得顶点P的为(-2,-5),把点B(1,0)代入抛物线解析式,解得,a=; (2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G,根据点P、M关于点B成中心对称,证明△PBH≌△MBG,所以MG=PH=5,BG=BH=3,即顶点M的坐标为(4,5),根据抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到,所以抛物线C3的表达式为y=(x-4)2+5; (3)根据抛物线C4由C1绕点x轴上的点Q旋转180°得点N的纵坐标为5,设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PK⊥NG于K,可求得EF=AB=2BH=6,FG=3,点F坐标为(m+3,0),H坐标为(2,0),K坐标为(m,-5), 根据勾股定理得:PN2=NK2+PK2=m2+4m+104,PF2=PH2+HF2=m2+10m+50,NF2=52+32=34. 分三种情况讨论,利用勾股定理列方程求解即可.①当2∠PNF=90°时,PN2+NF2=PF2,解得m=,即Q点坐标为(,0); ②当∠PFN=90°时,PF2+NF2=PN2,解得m=, ∴Q点坐标为(,0), ③PN>NK=10>NF,所以∠NPF≠90° 综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形. 【解析】 (1)由抛物线C1:y=a(x+2)2-5得, 顶点P的坐标为(-2,-5),(2分) ∵点B(1,0)在抛物线C1上, ∴0=a(1+2)2-5, 解得,a=;(4分) (2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G, ∵点P、M关于点B成中心对称, ∴PM过点B,且PB=MB, ∴△PBH≌△MBG, ∴MG=PH=5,BG=BH=3, ∴顶点M的坐标为(4,5),(6分) 抛物线C2由C1关于x轴对称得到,抛物线C3由C2平移得到, ∴抛物线C3的表达式为y=(x-4)2+5;(8分) (3)∵抛物线C4由C1绕点x轴上的点Q旋转180°得到, ∴顶点N、P关于点Q成中心对称, 由(2)得点N的纵坐标为5, 设点N坐标为(m,5),(9分) 作PH⊥x轴于H,作NG⊥x轴于G, 作PK⊥NG于K, ∵旋转中心Q在x轴上, ∴EF=AB=2BH=6, ∴FG=3,点F坐标为(m+3,0). H坐标为(-2,0),K坐标为(m,-5), ∵顶点P的坐标为(-2,-5), 根据勾股定理得: PN2=NK2+PK2=m2+4m+104, PF2=PH2+HF2=m2+10m+50, NF2=52+32=34,(10分) ①当∠PNF=90°时,PN2+NF2=PF2,解得m=, ∴Q点坐标为(,0). ②当∠PFN=90°时,PF2+NF2=PN2,解得m=, ∴Q点坐标为(,0). ③∵PN>NK=10>NF, ∴∠NPF≠90° 综上所得,当Q点坐标为(,0)或(,0)时,以点P、N、F为顶点的三角形是直角三角形.(13分)
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
查看答案
2011年,陕西西安被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了______名学生;
(2)将图①补充完整;
(3)求出图②中C级所占的圆心角的度数;
(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?

manfen5.com 满分网 查看答案
为迎接即将来临的2012年中考,我市一家电子计算器专卖店决定搞促销活动,将每只进价为40元,售价60元的计算机按以下方式进行优惠;凡是一次买10只以上的,每多买1只,所买的全部计算器每只就降低1元,例如,某人买20只计算器,于是每只降价1×(20-10)=10(元),因此,所买的全部20只计算器都按照每只50元计算,但是最低价为每只46元.
(1)若一次至少买m只,才能以最低价购买,求m的值;
(2)写出该专卖店当一次销售x(10<x≤m)只时,所获利润y(元)与x(只)之间的函数关系式;
(3)若店主一次卖的只数在10至20只之间,问一次卖多少只获得的利润最大?其最大利润为多少?
查看答案
如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.

manfen5.com 满分网 查看答案
解不等式组manfen5.com 满分网,并将它的解集在数轴上表示出来.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.