满分5 > 初中数学试题 >

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(...

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
manfen5.com 满分网
(1)因为点A在线段PQ垂直平分线上,所以得到线段相等,可得CE=CQ,用含t的式子表示出这两个线段即可得解; (2)作PM⊥BC,将四边形的面积表示为S△ABC-S△BPE即可求解; (3)假设存在符合条件的t值,由相似三角形的性质即可求得. 【解析】 (1)∵点A在线段PQ的垂直平分线上, ∴AP=AQ; ∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°, ∴∠EQC=45°; ∴∠DEF=∠EQC; ∴CE=CQ; 由题意知:CE=t,BP=2t, ∴CQ=t; ∴AQ=8-t; 在Rt△ABC中,由勾股定理得:AB=10cm; 则AP=10-2t; ∴10-2t=8-t; 解得:t=2; 答:当t=2s时,点A在线段PQ的垂直平分线上; (2)过P作PM⊥BE,交BE于M ∴∠BMP=90°; 在Rt△ABC和Rt△BPM中,, ∴; ∴PM=; ∵BC=6cm,CE=t,∴BE=6-t; ∴y=S△ABC-S△BPE=-=- ==; ∵, ∴抛物线开口向上; ∴当t=3时,y最小=; 答:当t=3s时,四边形APEC的面积最小,最小面积为cm2. (3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上; 过P作PN⊥AC,交AC于N ∴∠ANP=∠ACB=∠PNQ=90°; ∵∠PAN=∠BAC, ∴△PAN∽△BAC; ∴; ∴; ∴,; ∵NQ=AQ-AN, ∴NQ=8-t-()= ∵∠ACB=90°,B、C、E、F在同一条直线上, ∴∠QCF=90°,∠QCF=∠PNQ; ∵∠FQC=∠PQN, ∴△QCF∽△QNP; ∴,∴; ∵0<t<4.5,∴; 解得:t=1; 答:当t=1s,点P、Q、F三点在同一条直线上.
复制答案
考点分析:
相关试题推荐
如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;
(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=manfen5.com 满分网时,求CH的长.
manfen5.com 满分网
查看答案
某公园的门票价格如下表:
购票人数1-50人51-100人100人以上
票价50元/人40元/人25元/人
我区某校初三年级(1)、(2)两班共有学生100多人,其中(1)班50多人,(2)班不足50人,准备去此公园游览.若两班分别购票共需4730元;若两班合在一起购票共需2650元.请问初三(1)、(2)两班各有学生多少名?
查看答案
九年级(1)班的小亮为了了解本班同学的血型情况,对全班同学进行了调查.将调查数据绘制成如下两幅不完整的统计图表.请你根据图表提供的信息回答下列问题:
(1)九年级(1)班共有学生______人,其中a=______
(2)扇形统计图中,AB血型所在扇形的圆心角为______度;
(3)已知同种血型的人可以互相输血.O型血可以输给任何一种血型的人,其他不同血型的人不能互相输血.小红是九年级(1)班的B血型学生.因病需要输血.在本班学生中(小红除外)任找一人,求他的血可以输给小红的概率.
 血型人数 
 A a
 B 13
 AB 5
 O 18


manfen5.com 满分网 查看答案
(1)如图1,点E、F、G分别是▱ABCD的边AB、BC、CD、DA的中点.求证:△BEF≌△DGH.
(2)如图2,△ABC中,cosB=manfen5.com 满分网,sinC=manfen5.com 满分网,AC=5,求△ABC的面积.
manfen5.com 满分网
查看答案
(1)manfen5.com 满分网+(4-π)
(2)先化简:manfen5.com 满分网,再选择一个合适的x代入求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.