满分5 > 初中数学试题 >

如图1,点C将线段AB分成两部分,如果,那么称点C为线段AB的黄金分割点.某研究...

如图1,点C将线段AB分成两部分,如果manfen5.com 满分网,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果manfen5.com 满分网,那么称直线l为该图形的黄金分割线.
manfen5.com 满分网
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.
(1)设△ABC的边AB上的高为h,由三角形的面积公式即可得出=,=,再由点D为边AB的黄金分割点可得出=,故可得出结论; (2)由DF∥CE可知△DEC和△FCE的公共边CE上的高也相等,故S△DEC=S△FCE,设直线EF与CD交于点G,由同底等高的三角形的面积相等可知S△DEG=S△FEG,故可得出S△ADC=S四边形AFGD+S△FCG=S△AEF,再由S△BDC=S四边形BEFC,再由=可知=,故直线EF也是△ABC的黄金分割线. 【解析】 (1)直线CD是△ABC的黄金分割线.理由如下: 设△ABC的边AB上的高为h. ∵S△ADC=AD•h,S△BDC=BD•h,S△ABC=AB•h, ∴=,=, 又∵点D为边AB的黄金分割点, ∴=, ∴=, ∴直线CD是△ABC的黄金分割线; (2)∵DF∥CE, ∴△DEC和△FCE的公共边CE上的高也相等, ∴S△DEC=S△FCE, 设直线EF与CD交于点G, ∴S△DEG=S△FCG, ∴S△ADC=S四边形AFGD+S△FCG=S四边形AFGD+S△DGE=S△AEF, S△BDC=S四边形BEFC,. 又∵=, ∴=, ∴直线EF也是△ABC的黄金分割线.
复制答案
考点分析:
相关试题推荐
某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.
(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?
(2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的manfen5.com 满分网,但又不少于红梅牌钢笔的数量的manfen5.com 满分网.如果他们买了锦江牌钢笔x支,买这两种笔共花了y元.
①请写出y(元)关于x(支)的函数关系式,并求出自变量x的取值范围;
②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?
查看答案
manfen5.com 满分网如图,已知直线y=manfen5.com 满分网x与双曲线manfen5.com 满分网交于A,B两点,且点A的横坐标为4.
(1)求k的值;
(2)若双曲线manfen5.com 满分网上一点C的纵坐标为8,求△AOC的面积;
(3)过原点O的另一条直线l交双曲线manfen5.com 满分网于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
查看答案
解分式方程:manfen5.com 满分网
查看答案
先化简:manfen5.com 满分网,再任选一个你喜欢的数代入求值.
查看答案
把边长为3的正三角形各边三等分,分割得到图①,图中含有1个边长是1的正六边形;
把边长为4的正三角形各边四等分,分割得到图②,图中含有3个边长是1的正六边形;
把边长为5的正三角形各边五等分,分割得到图③,图中含有6个边长是1的正六边形;
…依此规律,把边长为7的正三角形各边七等分,并按同样的方法分割,得到的图形中含有    个边长是1的正六边形.
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.