满分5 > 初中数学试题 >

如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,A...

如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形;
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.

manfen5.com 满分网
(1)点P作PM⊥BC,垂足为M,则四边形PDCM为矩形,根据梯形的面积公式就可以利用t表示,就得到S与t之间的函数关系式. (2)以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况: ①若PQ=BQ,②若BP=BQ,③若PB=PQ. 在Rt△PMQ中根据勾股定理,就得到一个关于t的方程,就可以求出t. (3)根据相似三角形对应边成比例可列式求出t,从而根据正切的定义求出值. (4)首先假设存在,然后再根据相似三角形对应边成比例求证. 【解析】 (1)如图,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形. ∴PM=DC=12. ∵QB=16-t, ∴S=×12×(16-t)=96-6t(0≤t<16); (2)由图可知:CM=PD=2t,CQ=t. 以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况: ①若PQ=BQ. 在Rt△PMQ中,PQ2=t2+122, 由PQ2=BQ2得t2+122=(16-t)2, 解得t=; ②若BP=BQ. 在Rt△PMB中,BP2=(16-2t)2+122. 由BP2=BQ2得:(16-2t)2+122=(16-t)2 即3t2-32t+144=0. 由于△=-704<0, ∴3t2-32t+144=0无解, ∴PB≠BQ. ③若PB=PQ. 由PB2=PQ2,得t2+122=(16-2t)2+122 整理,得3t2-64t+256=0. 解得t1=,t2=16(舍去) 综合上面的讨论可知:当t=秒或t=秒时,以B、P、Q三点为顶点的三角形是等腰三角形. (3)如图,由△OAP∽△OBQ,得. ∵AP=2t-21,BQ=16-t, ∴2(2t-21)=16-t. ∴t=. 过点Q作QE⊥AD,垂足为E. ∵PD=2t,ED=QC=t, ∴PE=t. 在Rt△PEQ中,tan∠QPE=. 又∵AD∥BC, ∴∠BQP=∠QPE, ∴tan∠BQP=; (4)设存在时刻t,使得PQ⊥BD. 如图,过点Q作QE⊥AD于E,垂足为E. ∵AD∥BC ∴∠BQF=∠EPQ, 又∵在△BFQ和△BCD中∠BFQ=∠C=90°, ∴∠BQF=∠BDC, ∴∠BDC=∠EPQ, 又∵∠C=∠PEQ=90°, ∴Rt△BDC∽Rt△QPE, ∴,即. 解得t=9. 所以,当t=9秒时,PQ⊥BD.
复制答案
考点分析:
相关试题推荐
抛物线y=ax2+bx+c(a≠0)过点A(1,-3),B(3,-3),C(-1,5),顶点为M点.
(1)求该抛物线的解析式.
(2)试判断抛物线上是否存在一点P,使∠POM=90°.若不存在,说明理由;若存在,求出P点的坐标.
(3)试判断抛物线上是否存在一点K,使∠OMK=90°,若不存在,说明理由;若存在,求出K点的坐标.

manfen5.com 满分网 查看答案
已知:如图,C为半圆上一点,manfen5.com 满分网,过点C作直径AB的垂线CP,P为垂足,弦AE分别交PC,CB于点D,F.
(1)求证:AD=CD;
(2)若DF=manfen5.com 满分网,tan∠ECB=manfen5.com 满分网,求PB的长.

manfen5.com 满分网 查看答案
如图1,点C将线段AB分成两部分,如果manfen5.com 满分网,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为S1,S2,如果manfen5.com 满分网,那么称直线l为该图形的黄金分割线.
manfen5.com 满分网
(1)研究小组猜想:在△ABC中,若点D为AB边上的黄金分割点(如图2),则直线CD是△ABC的黄金分割线.你认为对吗?为什么?
(2)研究小组在进一步探究中发现:过点C任作一条直线交AB于点E,再过点D作直线DF∥CE,交AC于点F,连接EF(如图3),则直线EF也是△ABC的黄金分割线.请你说明理由.
查看答案
某校九年级三班为开展“迎2008年北京奥运会”的主题班会活动,派了小林和小明两位同学去学校附近的超市购买钢笔作为奖品.已知该超市的锦江牌钢笔每支8元,红梅牌钢每支4.8元,他们要购买这两种笔共40支.
(1)如果他们两人一共带了240元,全部用于购买奖品,那么能买这两种笔各多少支?
(2)小林和小明根据主题班会活动的设奖情况,决定所购买的锦江牌钢笔的数量要少于红梅牌钢笔的数量的manfen5.com 满分网,但又不少于红梅牌钢笔的数量的manfen5.com 满分网.如果他们买了锦江牌钢笔x支,买这两种笔共花了y元.
①请写出y(元)关于x(支)的函数关系式,并求出自变量x的取值范围;
②请帮他们计算一下,这两种笔各购买多少支时,所花的钱最少,此时花了多少元?
查看答案
manfen5.com 满分网如图,已知直线y=manfen5.com 满分网x与双曲线manfen5.com 满分网交于A,B两点,且点A的横坐标为4.
(1)求k的值;
(2)若双曲线manfen5.com 满分网上一点C的纵坐标为8,求△AOC的面积;
(3)过原点O的另一条直线l交双曲线manfen5.com 满分网于P,Q两点(P点在第一象限),若由点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.