满分5 > 初中数学试题 >

如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥...

如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;
(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=manfen5.com 满分网时,求CH的长.
manfen5.com 满分网
(1)寻找AG、CE所在的两个三角形全等的条件,证明全等即可; (2)①由△AGD≌△CED,可知∠1=∠2,利用对顶角相等及互余关系证明垂直; ②连接GE交AD于P,根据S△AGD+S△ACD=S四边形ACDG=S△ACG+S△CGD,再分别表示四个三角形的底和高,列方程求CH. 【解析】 (1)AG=CE成立. 证明:∵四边形ABCD、四边形DEFG是正方形, ∴GD=DE,AD=DC,(1分) ∠GDE=∠ADC=90°. ∴∠GDA=90°-∠ADE=∠EDC.                     (2分) ∴△AGD≌△CED. ∴AG=CE.                                     (3分) (2)①类似(1)可得△AGD≌△CED, ∴∠1=∠2.                                    (4分) 又∵∠HMA=∠DMC, ∴∠AHM=∠ADC=90°, 即AG⊥CH.                                    (5分) ②连接GE,交AD于P,连接CG, 由题意有, ∴AP=3,.                            (8分) ∵EG⊥AD,CD⊥AD,∴EG∥CD, ∴以CD为底边的△CDG的高为PD=1,(延长CD画高) S△AGD+S△ACD=S四边形ACDG=S△ACG+S△CGD ∴4×1+4×4=×CH+4×1 ∴CH=.                                   (10分)
复制答案
考点分析:
相关试题推荐
某公园的门票价格如下表:
购票人数1-50人51-100人100人以上
票价50元/人40元/人25元/人
我区某校初三年级(1)、(2)两班共有学生100多人,其中(1)班50多人,(2)班不足50人,准备去此公园游览.若两班分别购票共需4730元;若两班合在一起购票共需2650元.请问初三(1)、(2)两班各有学生多少名?
查看答案
2010年湛江市某校为了了解400名学生体育加试成绩,从中抽取了部分学生的成绩(满分为40分,成绩均为整数).绘制了频数分布表与频数分布直方图(如图所示),请结合图表信息解答下列问题.
分组频数频率
15.5~20.560.10
20.5~25.50.20
25.5~30.5180.30
30.5~35.515
35.5~40.590.15
合计1.00
(1)补全频数分布表与频数分布直方图;
(2)如果成绩在31分以上(含31分)的同学属于优良,请你估计全校约有多少人达到优良水平;
(3)加试结束后,校长说:“2008年,初一测试时,优良人数只有90人,经过两年的努力,才有今天的成绩….”假设每年优良人数增长速度一样,请你求出每年的平均增长率(结果精确到1%).

manfen5.com 满分网 查看答案
(1)如图1在△ABC中,D为AB上一点,DE∥BC交AC于点E,若AD:DB=2:3,BC=10,求DE的长.
(2)如图2,AB为⊙O的直径,弦CD⊥AB,垂足为点M,连接AC.若∠B=30°,AB=2,求CD的长.

manfen5.com 满分网 查看答案
(1)manfen5.com 满分网+(4-π)
(2)先化简:manfen5.com 满分网,再选择一个合适的x代入求值.
查看答案
如图,已知⊙B与△ABD的边AD相切于点C,AC=4,⊙B的半径为3,当⊙A与⊙B相切时,⊙A的半径是   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.