满分5 > 初中数学试题 >

如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP...

如图,在△ABC中,∠C=45°,BC=10,高AD=8,矩形EFPQ的一边QP在边上,E、F两点分别在AB、AC上,AD交EF于点H.
(1)求证:manfen5.com 满分网
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.

manfen5.com 满分网
(1)易证得△AEF∽△ABC,而AH、AD是两个三角形的对应高,EF、BC是对应边,它们的比都等于相似比,由此得证; (2)此题要转化为函数的最值问题来求解;由(1)的结论可求出AH的表达式,进而可得到HD(即FP)的表达式;已求得了矩形的长和宽,即可根据矩形的面积公式得到关于矩形EFPQ的面积和x的函数关系式,根据函数的性质即可得到矩形的最大面积及对应的x的值; (3)此题要理清几个关键点,当矩形的面积最大时,由(2)可知此时EF=5,EQ=4;易证得△CPF是等腰Rt△,则PC=PF=4,QC=QP+PC=9; 一、P、C重合时,矩形移动的距离为PC(即4),运动的时间为4s; 二、E在线段AC上时,矩形移动的距离为9-4=5,运动的时间为5s; 三、Q、C重合时,矩形运动的距离为QC(即9),运动的时间为9s; 所以本题要分三种情况讨论: ①当0≤t<4时,重合部分的面积是矩形EFPQ与等腰Rt△FMN(设AC与FE、FP的交点为M、N)的面积差,FM的长即为梯形移动的距离,由此可得到S、t的函数关系式; ②当4≤t<5时,重合部分是个梯形,可用t表示出梯形的上下底,进而由梯形的面积公式求得S、t的函数关系式; ③当5≤t≤9时,重合部分是个等腰直角三角形,其直角边的长易求得,即可得出此时S、t的函数关系式. (1)证明:∵四边形EFPQ是矩形,∴EF∥QP ∴△AEF∽△ABC 又∵AD⊥BC, ∴AH⊥EF; ∴=; (2)【解析】 由(1)得=,∴AH=x ∴EQ=HD=AD-AH=8-x ∴S矩形EFPQ=EF•EQ=x(8-x)=-x2+8x=-(x-5)2+20 ∵-<0, ∴当x=5时,S矩形EFPQ有最大值,最大值为20; (3)【解析】 如图1,由(2)得EF=5,EQ=4 ∵∠C=45°,△FPC是等腰直角三角形. ∴PC=FP=EQ=4,QC=QP+PC=9 分三种情况讨论: ①如图2,当0≤t<4时, 设EF、PF分别交AC于点M、N, 则△MFN是等腰直角三角形; ∴FN=MF=t ∴S=S矩形EFPQ-SRt△MFN=20-t2=-t2+20 ②如图3 当4≤t<5时,则ME=5-t,QC=9-t, ∴S=S梯形EMCQ=[(5-t)+(9-t)]×4=-4t+28 ③如图4 当5≤t≤9时,设EQ交AC于点K,则KQ=QC=9-t ∴S=S△KQC=(9-t)2=(t-9)2 综上所述:S与t的函数关系式为: S=.
复制答案
考点分析:
相关试题推荐
如图1,若四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;
(1)当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.
①求证:AG⊥CH;
②当AD=4,DG=manfen5.com 满分网时,求CH的长.
manfen5.com 满分网
查看答案
某公园的门票价格如下表:
购票人数1-50人51-100人100人以上
票价50元/人40元/人25元/人
我区某校初三年级(1)、(2)两班共有学生100多人,其中(1)班50多人,(2)班不足50人,准备去此公园游览.若两班分别购票共需4730元;若两班合在一起购票共需2650元.请问初三(1)、(2)两班各有学生多少名?
查看答案
2010年湛江市某校为了了解400名学生体育加试成绩,从中抽取了部分学生的成绩(满分为40分,成绩均为整数).绘制了频数分布表与频数分布直方图(如图所示),请结合图表信息解答下列问题.
分组频数频率
15.5~20.560.10
20.5~25.50.20
25.5~30.5180.30
30.5~35.515
35.5~40.590.15
合计1.00
(1)补全频数分布表与频数分布直方图;
(2)如果成绩在31分以上(含31分)的同学属于优良,请你估计全校约有多少人达到优良水平;
(3)加试结束后,校长说:“2008年,初一测试时,优良人数只有90人,经过两年的努力,才有今天的成绩….”假设每年优良人数增长速度一样,请你求出每年的平均增长率(结果精确到1%).

manfen5.com 满分网 查看答案
(1)如图1在△ABC中,D为AB上一点,DE∥BC交AC于点E,若AD:DB=2:3,BC=10,求DE的长.
(2)如图2,AB为⊙O的直径,弦CD⊥AB,垂足为点M,连接AC.若∠B=30°,AB=2,求CD的长.

manfen5.com 满分网 查看答案
(1)manfen5.com 满分网+(4-π)
(2)先化简:manfen5.com 满分网,再选择一个合适的x代入求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.