满分5 > 初中数学试题 >

如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点...

manfen5.com 满分网如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求这条抛物线的解析式;
(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?
(1)根据所建坐标系易求M、P的坐标; (2)可设解析式为顶点式,把O点(或M点)坐标代入求待定系数求出解析式; (3)总长由三部分组成,根据它们之间的关系可设A点坐标为(m,0),用含m的式子表示三段的长,再求其和的表达式,运用函数性质求解. 【解析】 (1)M(12,0),P(6,6).(2分) (2)设抛物线解析式为: y=a(x-6)2+6 (3分) ∵抛物线y=a(x-6)2+6经过点(0,0) ∴0=a(0-6)2+6,即a=-(4分) ∴抛物线解析式为:y=-(x-6)2+6,即y=-x2+2x.(5分) (3)设A(m,0),则B(12-m,0),C(12-m,-m2+2m) D(m,-m2+2m).(6分) ∴“支撑架”总长AD+DC+CB=(-m2+2m)+(12-2m)+(-m2+2m) =-m2+2m+12 =-(m-3)2+15.(8分) ∵此二次函数的图象开口向下. ∴当m=3米时,AD+DC+CB有最大值为15米.(9分)
复制答案
考点分析:
相关试题推荐
观察下列算式:
①1×3-22=3-4=-1
②2×4-32=8-9=-1
③3×5-42=15-16=-1
______

(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
查看答案
某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.
(1)写出销售量y件与销售单价x元之间的函数关系式;
(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;
(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?
查看答案
建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?
(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?
查看答案
如图,AB是半圆O的直径,点C为半径OB上一点,过点C作CD丄AB交半圆O于点D,将△ACD沿AD折叠得到△AED,AE交半圆于点F,连接DF.
(1)求证:DE是半圆的切线:
(2)连接0D,当OC=BC时,判断四边形ODFA的形状,并证明你的结论.

manfen5.com 满分网 查看答案
如图,一转盘被等分成三个扇形,上面分别标有-1,1,2中的一个数,指针位置固定,转动转盘后任其自由停止,这时,某个扇形会恰好停在指针所指的位置,并相应得到这个扇形上的数(若指针恰好指在等分线上,当做指向右边的扇形>.
(1)若小静转动转盘一次,求得到负数的概率;
(2)小宇和小静分别转动转盘一次,若两人得到的数相同,则称两人“不谋而合”.用列表法(或画树状图)求两人“不谋而合”的概率.
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.