满分5 > 初中数学试题 >

如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿C...

如图,在Rt△ABC中,∠B=90°,BC=5manfen5.com 满分网,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.

manfen5.com 满分网
(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证; (2)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得; (3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中求得AD=2AE即求得. ②∠DEF=90°时,由(2)知EF∥AD,则得∠ADE=∠DEF=90°,求得AD=AE•cos60°列式得. ③∠EFD=90°时,此种情况不存在. (1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t, ∴DF=t. 又∵AE=t, ∴AE=DF. (2)【解析】 能.理由如下: ∵AB⊥BC,DF⊥BC, ∴AE∥DF. 又AE=DF, ∴四边形AEFD为平行四边形. ∵AB=BC•tan30°=5=5, ∴AC=2AB=10. ∴AD=AC-DC=10-2t. 若使▱AEFD为菱形,则需AE=AD, 即t=10-2t,t=. 即当t=时,四边形AEFD为菱形. (3)【解析】 ①∠EDF=90°时,四边形EBFD为矩形. 在Rt△AED中,∠ADE=∠C=30°, ∴AD=2AE. 即10-2t=2t,t=. ②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD, ∴∠ADE=∠DEF=90°. ∵∠A=90°-∠C=60°, ∴AD=AE•cos60°. 即10-2t=t,t=4. ③∠EFD=90°时,此种情况不存在. 综上所述,当t=或4时,△DEF为直角三角形.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.
(1)直接写出点M及抛物线顶点P的坐标;
(2)求这条抛物线的解析式;
(3)若要搭建一个矩形“支撑架”AD-DC-CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?
查看答案
观察下列算式:
①1×3-22=3-4=-1
②2×4-32=8-9=-1
③3×5-42=15-16=-1
______

(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
查看答案
某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.
(1)写出销售量y件与销售单价x元之间的函数关系式;
(2)写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;
(3)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?
查看答案
建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.
(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?
(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?
(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?
查看答案
如图,AB是半圆O的直径,点C为半径OB上一点,过点C作CD丄AB交半圆O于点D,将△ACD沿AD折叠得到△AED,AE交半圆于点F,连接DF.
(1)求证:DE是半圆的切线:
(2)连接0D,当OC=BC时,判断四边形ODFA的形状,并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.