满分5 > 初中数学试题 >

阅读理【解析】 课外兴趣小组活动时,老师提出了如下问题: 如图1,△ABC中,若...

阅读理【解析】

课外兴趣小组活动时,老师提出了如下问题:
如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(1)问题解决:
受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;
(2)问题拓展:
如图3,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连接EF,探索线段BE、CF、EF之间的数量关系,并加以证明.
manfen5.com 满分网
(1)①可按阅读理解中的方法构造全等,把CF和BE转移到一个三角形中求解. ②由①中的全等得到∠C=∠CBG.∵∠ABC+∠C=90°,∴∠EBG=90°,可得三边之间存在勾股定理关系; (2)应利用旋转构造BD和CD所在的三角形全等,把CF和BE转移到一个三角形中求解. 【解析】 ①延长FD到G,使得DG=DF,连接BG、EG.(或把△CFD绕点D逆时针旋转180°得到△BGD), ∴CF=BG,DF=DG, ∵DE⊥DF, ∴EF=EG. 在△BEG中,BE+BG>EG,即BE+CF>EF.(4分) ②若∠A=90°,则∠EBC+∠FCB=90°, 由①知∠FCD=∠DBG,EF=EG, ∴∠EBC+∠DBG=90°,即∠EBG=90°, ∴在Rt△EBG中,BE2+BG2=EG2, ∴BE2+CF2=EF2;(3分) (2)将△DCF绕点D逆时针旋转120°得到△DBG. ∵∠C+∠ABD=180°,∠4=∠C, ∴∠4+∠ABD=180°, ∴点E、B、G在同一直线上. ∵∠3=∠1,∠BDC=120°,∠EDF=60°, ∴∠1+∠2=60°,故∠2+∠3=60°,即∠EDG=60° ∴∠EDF=∠EDG=60°, ∵DE=DE,DF=DG, ∴△DEG≌△DEF, ∴EF=EG=BE+BG,即EF=BE+CF.(4分)
复制答案
考点分析:
相关试题推荐
某班将举行“庆祝建党90周年知识竞赛“活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:
manfen5.com 满分网
请根据上面的信息.解决问題:
(1)试计算两种笔记本各买了多少本?
(2)请你解释:小明为什么不可能找回68元?
查看答案
如图,已知:△ABC是⊙O的内接三角形,D是OA延长线上的一点,连接DC,且∠B=∠D=30°.
(1)判断直线CD与⊙O的位置关系,并说明理由.
(2)若AC=6,求图中弓形(即阴影部分)的面积.

manfen5.com 满分网 查看答案
2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查悄况整理并绘制了如下尚不完整的统计图,请根据相关倌息,解答下列问题
manfen5.com 满分网
(1)该记者本次一共调查了______名司机.
(2)求图甲中④所在扇形的圆心角,并补全图乙.
(3)在本次调查中,记者随机采访其中的一名司机.求他属第②种情况的概率.
(4)请估计开车的10万名司机中,不违反“酒驾“禁令的人数.
查看答案
某学校的大门是伸缩的推拉门,如图是大门关闭时的示意图.若图中菱形的边长都是0.5米、锐角都是50°,则大门的宽大约是多少米?(结果保留两个有效数字)
(参考数据:sin25°=0.4226,cos25°=0.9063)

manfen5.com 满分网 查看答案
如图,在△ABC中,AB=AC,D、E、F分别是三角形三边中点,试判断四边形ADEF的形状并加以说明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.