满分5 > 初中数学试题 >

如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,...

如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有( )
manfen5.com 满分网
A.1个
B.2个
C.3个
D.0个
由BC=CD=2AD,且E、F分别为BC、DC的中点,利用中点定义及等量代换得到FC=EC,再由一对公共角相等,利用SAS得到△BCF≌△DCE,利用全等三角形的对应角相等得到∠FBC=∠EDC,再由BE=DF及对顶角相等,利用AAS得到的△BPE≌△DPF,利用全等三角形的对应角相等得到BP=DP,再由CP为公共边,BC=DC,利用SSS得到△BPC≌△DPC,根据全等三角形的对应角相等得到∠BCP=∠DCP,即CP为∠BCD平分线,故选项①正确;由AD=BE且AB∥BE,利用一组对边平行且相等的四边形为平行四边形得到ABED为平行四边形,故选项②正确;由△BPC≌△DPC,得到两三角形面积相等,而△BPQ与四边形ADPQ的面积不相等,可得出CQ不能将直角梯形ABCD分为面积相等的两部分,故选项③不正确;由全等得到BF=ED,利用平行四边形的对边相等得到AB=ED,等量代换可得AB=BF,即三角形ABF为等腰三角形,故选项④正确. 【解析】 ∵BC=CD=2AD,E、F分别是BC、CD边的中点, ∴CF=CE,BE=DF, 在△BCF和△DCE中, ∵, ∴△BCF≌△DCE(SAS), ∴∠FBC=∠EDC,BF=ED, 在△BPE和△DPF中, ∵, ∴△BPE≌△DPF(AAS), ∴BP=DP, 在△BPC和△DPC中, ∵, ∴△BPC≌△DPC(SSS), ∴∠BCP=∠DCP,即CP平分∠BCD, 故选项①正确; 又∵AD=BE且AD∥BE, ∴四边形ABED为平行四边形, 故选项②正确; 显然S△BPC=S△DPC,但是S△BPQ≠S四边形ADPQ, ∴S△BPC+S△BPQ≠S△DPC+S四边形ADPQ, 即CQ不能将直角梯形ABCD分为面积相等的两部分, 故选项③不正确; ∵BF=ED,AB=ED, ∴AB=BF,即△ABF为等腰三角形, 故④正确; 综上,不正确的选项为③,其个数有1个. 故选A.
复制答案
考点分析:
相关试题推荐
某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为( )
A.0.6元
B.0.7元
C.0.8元
D.0.9元
查看答案
如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是( )
manfen5.com 满分网
A.2
B.3
C.4
D.5
查看答案
如图,是由8相同的小立方块搭成的几何体,它的三个视图是2×2的正方形.若拿掉若干个小立方块后(几何体不倒掉),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( )
manfen5.com 满分网
A.1
B.2
C.3
D.4
查看答案
关于x的方程x2+2kx+k-1=0的根的情况描述正确的是( )
A.k为任何实数,方程都没有实数根
B.k为任何实数,方程都有两个不相等的实数根
C.k为任何实数,方程都有两个相等的实数根
D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种
查看答案
下列图形中,既是轴对称图形,又是中心对称图形的是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.