满分5 > 初中数学试题 >

如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD...

如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.
(1)求证:EF+manfen5.com 满分网AC=AB;
(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1manfen5.com 满分网A1C1与AB三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.

manfen5.com 满分网
(1)过F作FM⊥AB于点M,首先证明△AMF≌△AEF,求出MF=MB,即可知道EF+AE=AB. (2)连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q,证明Rt△A1E1F1≌Rt△A1PF1,Rt△QF1C1≌Rt△E1F1C1后推出A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1化简为E1F1+A1C1=AB. (3)设PB=x,QB=x,PB=1,E1F1=1,又推出E1F1+A1C1=AB,得出BD=. (1)证明:如图1,过点F作FM⊥AB于点M,在正方形ABCD中,AC⊥BD于点E. ∴AE=AC,∠ABD=∠CBD=45°, ∵AF平分∠BAC, ∴EF=MF, 又∵AF=AF, ∴Rt△AMF≌Rt△AEF, ∴AE=AM, ∵∠MFB=∠ABF=45°, ∴MF=MB,MB=EF, ∴EF+AC=MB+AE=MB+AM=AB. (2)E1F1,A1C1与AB三者之间的数量关系:E1F1+A1C1=AB 证明:如图2,连接F1C1,过点F1作F1P⊥A1B于点P,F1Q⊥BC于点Q, ∵A1F1平分∠BA1C1,∴E1F1=PF1;同理QF1=PF1,∴E1F1=PF1=QF1, 又∵A1F1=A1F1,∴Rt△A1E1F1≌Rt△A1PF1, ∴A1E1=A1P, 同理Rt△QF1C1≌Rt△E1F1C1, ∴C1Q=C1E1, 由题意:A1A=C1C, ∴A1B+BC1=AB+A1A+BC-C1C=AB+BC=2AB, ∵PB=PF1=QF1=QB, ∴A1B+BC1=A1P+PB+QB+C1Q=A1P+C1Q+2E1F1, 即2AB=A1E1+C1E1+2E1F1=A1C1+2E1F1, ∴E1F1+A1C1=AB. (3)【解析】 设PB=x,则QB=x, ∵A1E1=3,QC1=C1E1=2, Rt△A1BC1中,A1B2+BC12=A1C12, 即(3+x)2+(2+x)2=52, ∴x1=1,x2=-6(舍去), ∴PB=1, ∴E1F1=1, 又∵A1C1=5, 由(2)的结论:E1F1+A1C1=AB, ∴AB=, ∴BD=.
复制答案
考点分析:
相关试题推荐
如图,等腰△ABC内接于⊙O,BA=CA,弦CD平分∠ACB,交AB于点H,过点B作AD的平行线分别交AC,DC于点E,F.
(1)求证:CF=BF;
(2)若BH=DH=1,求FH的值.

manfen5.com 满分网 查看答案
如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数y=manfen5.com 满分网的图象交于A(1,4)、B(3,m)两点.
(1)求一次函数的解析式;
(2)求△AOB的面积.

manfen5.com 满分网 查看答案
如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°.翻折梯形ABCD,使点B重合于点D,折痕分别交边AB、BC于点F、E,若AD=2,BC=8,
求:(1)梯形ABCD的面积;
(2)BE的长;
(3)∠CDE的正切值.

manfen5.com 满分网 查看答案
某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.
(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?
(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?
(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.

manfen5.com 满分网 查看答案
化简求值:manfen5.com 满分网,选一个你喜欢a值代入并求值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.