计算:
=( )
A.5
B.-1
C.-3
D.3
考点分析:
相关试题推荐
操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点.图1,2,3是旋转三角板得到的图形中的3种情况.
研究:
(1)三角板绕点P旋转,观察线段PD和PE之间有什么数量关系,并结合图2加以证明;
(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由;
(3)若将三角板的直角顶点放在斜边AB上的M处,且AM:MB=1:3,和前面一样操作,试问线段MD和ME之间有什么数量关系?并结合图4加以证明.
查看答案
已知二次函数y=2x
2-(m+1)x+m-1.
(1)求证:无论m为何值,函数y的图象与x轴总有交点.并指出当m为何值时,函数y的图象与x轴只有一个交点?
(2)当m为何值时,函数y的图象过原点?并求出此时图象与x轴的另一交点的坐标;
(3)如果函数y的图象的顶点在第四象限,求m的取值范围.
查看答案
如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=74°,∠BEQ=30°;在点F处测得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判断AB,AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果精确到0.1km).
(参考数据:
≈1.73,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)
查看答案
已知:如图,Rt△ABC中,∠ACB=90°,点O在AC上,以O为圆心、OC为半径的圆与AB相切于点D,交AC于点E.
(1)求证:DE∥OB;
(2)若⊙O的半径为2,BC=4,求AD的长.
查看答案
为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为
(a为常数),如图所示.据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?
查看答案