满分5 > 初中数学试题 >

已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是的中点,连接B...

已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是manfen5.com 满分网的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.
(1)求证:P是△ACQ的外心;
(2)若manfen5.com 满分网,求CQ的长;
(3)求证:(FP+PQ)2=FP•FG.

manfen5.com 满分网
(1)由于AB是⊙O的直径,则∠ACB=90°,只需证明P是Rt△ACQ斜边AQ的中点即可;由垂径定理易知弧AC=弧AE,而C是弧AD的中点,那么弧CD=弧AE,即∠PAC=∠PCA,根据等角的余角相等,还可得到∠AQC=∠PCQ,由此可证得AP=PC=PQ,即P是△ACQ的外心; (2)由(1)的相等弧可知:∠ABC=∠ACE=∠CAQ,那么它们的正切值也相等;在Rt△CAF中,根据CF的长及∠ACF的正切值,通过解直角三角形可求得AC的长,进而可在Rt△CAQ中,根据∠CAQ的正切值求出CQ的长; (3)由(1)知:PQ=CP,则所求的乘积式可化为:CF2=FP•FG;在Rt△ACB中,由射影定理得:CF2=AF•FB,因此只需证明AF•FB=FG•FP即可,将上式化成比例式,证线段所在的三角形相似即可,即证Rt△AFP∽Rt△GFB. (1)证明:∵C是的中点,∴, ∴∠CAD=∠ABC ∵AB是⊙O的直径,∴∠ACB=90°. ∴∠CAD+∠AQC=90° 又CE⊥AB,∴∠ABC+∠PCQ=90° ∴∠AQC=∠PCQ ∴在△PCQ中,PC=PQ, ∵CE⊥直径AB,∴ ∴ ∴∠CAD=∠ACE. ∴在△APC中,有PA=PC, ∴PA=PC=PQ ∴P是△ACQ的外心. (2)【解析】 ∵CE⊥直径AB于F, ∴在Rt△BCF中,由tan∠ABC=,CF=8, 得. ∴由勾股定理,得BC== ∵AB是⊙O的直径, ∴在Rt△ACB中,由tan∠ABC==,BC=, ∴AC=10, 易知Rt△ACB∽Rt△QCA, ∴AC2=CQ•BC, ∴CQ==; (3)证明:∵AB是⊙O的直径,∴∠ADB=90° ∴∠DAB+∠ABD=90° 又CF⊥AB,∴∠ABG+∠G=90° ∴∠DAB=∠G; ∴Rt△AFP∽Rt△GFB, ∴,即AF•BF=FP•FG 易知Rt△ACF∽Rt△CBF, ∴CF2=AF•BF(或由射影定理得) ∴FC2=PF•FG, 由(1),知PC=PQ,∴FP+PQ=FP+PC=FC ∴(FP+PQ)2=FP•FG.
复制答案
考点分析:
相关试题推荐
某汽车制造厂开发了一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人;他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元的工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少?
查看答案
如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.
(1)求证:△BCE≌△FDC;
(2)判断四边形ABDF是怎样的四边形,并说明理由.

manfen5.com 满分网 查看答案
如图所示一次函数y=x+b与反比例函数manfen5.com 满分网在第一象限的图象交于点B,且点B的横坐标为1,过点B作y轴的垂线,C为垂足,若S△BCO=manfen5.com 满分网,求一次函数和反比例函数的解析式.

manfen5.com 满分网 查看答案
某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,下图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8:2,又知此次调查中捐15元和20元的人数共39人.
(1)他们一共抽查了多少人捐款数不少于20元的概率是多少?
(2)这组数据的众数、中位数各是多少?
(3)若该校共有2310名学生,请估算全校学生共捐款多少元?

manfen5.com 满分网 查看答案
如图,小明在楼上点A处观察旗杆BC,测得旗杆顶部B的仰角为30°,测得旗杆底部C的俯角为60°,已知点A距地面的高AD为12m.求旗杆的高度.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.