满分5 > 初中数学试题 >

如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为...

如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.
(1)求出经过A、D、C三点的抛物线解析式;
(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;
(3)设AE长为y,试求y与t之间的函数关系式;
(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.

manfen5.com 满分网
(1)求抛物线的解析式可利用待定系数法,关键在于确定点D、C的坐标.在等边△DAB中,已知边长,容易求出点D到x、y轴的距离,据此可得点D的坐标.而将点D向右平移6个单位就能得到点C的坐标,则此问可解. (2)菱形的对角线互相垂直平分,那么连接AC后,则有AC⊥DB,若PQ⊥DB,必须满足PQ∥AC,显然当点P在BC上时是不会符合该条件的,那么只有P在CD上这一种情况.此时,四边形PCAQ是平行四边形,由对边相等(即PC=AQ)列等式即可求出t值. (3)此问应分作两段分析: ①P在CD上,此时AQ∥DP,有△DEP∽△AEQ,利用对应边成比例可求出AE、DE的比例关系,由此得到y的表达式; ②P在BC上,此时AE∥PB,有△QEA∽△QPB,解题思路同①,利用相似三角形的性质得到y的表达式. (4)要注意两条关键线:直线BD、抛物线的对称轴;若使得四边形FMNG的周长最小,可先作F、G分别关于直线BD、抛物线对称轴的对称点F′、G′,连接F′G′后,与BD、对称轴的交点就是符合条件的M、N,那么四边形的最小周长即为F′G′+FG. 【解析】 (1)△DAB中,∠DAB=60°,DA=AB=6 则:D到y轴的距离=AB=3、D到x轴的距离=DA•sin∠DAB=3; ∴D(3,3); 由于DC∥x轴,且DC=AB=6,那么将点D右移6个单位后可得点C,即C(9,3); 设抛物线的解析式为:y=ax2+bx,有: ,解得 ∴抛物线解析式为:y=-x2+x. (2)如图1,连接AC知AC⊥BD,若PQ⊥DB,则PQ∥AC,那么P在BC上时不存在符合要求的t值, 当P在DC上时,由于PC∥AQ且PQ∥AC, 所以四边形PCAQ是平行四边形, 则PC=AQ,有6-2t=t,得t=2. (3)①如图1,当点P在DC上,即0≤t≤3时, 有△EDP∽△EAQ, 则===, 那么AE=AD=2,即y=2; ②如图2,当点P在CB上, 即3<t≤6时,有△QEA∽△QPB, 则=,即=, 得y=, 综上所述:y=, (4)如图3,作点F关于直线DB的对称点F′,由菱形对称性知F′在DA上,用DF′=DF=1; 作点G关于抛物线ADC对称轴的对称点G′, 易求DG′=4, 连接F′G′交DB于点M、交对称轴于点N,点M、N即为所求的两点. 过F′作F′H⊥DG′于H, 在Rt△F′HD中,∠F′DH=180°-∠ADC=60°,F′D=1; 则:F′H=F′D•sin60°=,HD=F′D•cos60°=,HG′=HD+DG′=. 用勾股定理计算得F′G′=,所以四边形FMNG周长最小为F′G′+FG=+1.
复制答案
考点分析:
相关试题推荐
如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N.
(1)在以下结论①∠FDB=∠FEB;②MC垂直平分BD;③△DFN∽△EBD中正确的有______,请选择一个你认为正确的结论进行证明.
(2)若MC=manfen5.com 满分网,求BF的长.

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=manfen5.com 满分网(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B.
(1)求△AOB的面积;
(2)Q是反比例函数y=manfen5.com 满分网(x>0)图象上异于点P的另一点,请以Q为圆心,QO 半径画圆与x、y轴分别交于点M、N,连接AN、MB.猜想AN与MB的位置关系,并证明.

manfen5.com 满分网 查看答案
聪明好学的小云查阅有关资料发现:用不过圆锥顶点平行于一条母线的平面截圆锥所得的截面为抛物面,即图1中曲线CFD为抛物线的一部分,如图1,圆锥体SAB的母线长为10,侧面积为50π,圆锥的截面CFD交母线SB于F,交底面⊙P于C、D,AB⊥CD于O,OF∥SA且OF⊥CD,OP=4,OB=9.
(1)求底面圆的半径AP的长及圆锥侧面展开图的圆心角的度数;
(2)当以CD所在直线为x轴,OF所在的直线为y轴建立如图2所示的直角坐标系,求过C、F、D三点的抛物线的函数关系式.
manfen5.com 满分网
查看答案
杭州市相关部门正在研究制定居民用水价格调整方案.小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量、可承受的水价调整的幅度等进行调查,并把调查结果整理成图1和图2.
manfen5.com 满分网
已知被调查居民每户每月的用水量在m3之间,被调查的居民中对居民用水价格调价幅度抱“无所谓”态度的有8户,试回答下列问题:
(1)上述两个统计图表是否完整,若不完整,试把它们补全;
(2)若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?来
表1:阶梯式累进制调价方案
级数水量基数现行价格(元/立方米)调整后价格(元/立方米)
第一级每户每月15立方米以下(含15立方米)1.802.50
第二级每户每月超出15立方米部分1.803.30

查看答案
如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:manfen5.com 满分网,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.
(1)山坡坡角(即∠ABC)的度数等于______度;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:manfen5.com 满分网≈1.732).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.