如图,菱形ABCD的边长为6且∠DAB=60°,以点A为原点、边AB所在的直线为x轴且顶点D在第一象限建立平面直角坐标系.动点P从点D出发沿折线DCB向终点B以2单位/每秒的速度运动,同时动点Q从点A出发沿x轴负半轴以1单位/秒的速度运动,当点P到达终点时停止运动,运动时间为t,直线PQ交边AD于点E.
(1)求出经过A、D、C三点的抛物线解析式;
(2)是否存在时刻t使得PQ⊥DB,若存在请求出t值,若不存在,请说明理由;
(3)设AE长为y,试求y与t之间的函数关系式;
(4)若F、G为DC边上两点,且点DF=FG=1,试在对角线DB上找一点M、抛物线ADC对称轴上找一点N,使得四边形FMNG周长最小并求出周长最小值.
考点分析:
相关试题推荐
如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N.
(1)在以下结论①∠FDB=∠FEB;②MC垂直平分BD;③△DFN∽△EBD中正确的有______,请选择一个你认为正确的结论进行证明.
(2)若MC=
,求BF的长.
查看答案
如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=
(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B.
(1)求△AOB的面积;
(2)Q是反比例函数y=
(x>0)图象上异于点P的另一点,请以Q为圆心,QO 半径画圆与x、y轴分别交于点M、N,连接AN、MB.猜想AN与MB的位置关系,并证明.
查看答案
聪明好学的小云查阅有关资料发现:用不过圆锥顶点平行于一条母线的平面截圆锥所得的截面为抛物面,即图1中曲线CFD为抛物线的一部分,如图1,圆锥体SAB的母线长为10,侧面积为50π,圆锥的截面CFD交母线SB于F,交底面⊙P于C、D,AB⊥CD于O,OF∥SA且OF⊥CD,OP=4,OB=9.
(1)求底面圆的半径AP的长及圆锥侧面展开图的圆心角的度数;
(2)当以CD所在直线为x轴,OF所在的直线为y轴建立如图2所示的直角坐标系,求过C、F、D三点的抛物线的函数关系式.
查看答案
杭州市相关部门正在研究制定居民用水价格调整方案.小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量、可承受的水价调整的幅度等进行调查,并把调查结果整理成图1和图2.
已知被调查居民每户每月的用水量在m
3之间,被调查的居民中对居民用水价格调价幅度抱“无所谓”态度的有8户,试回答下列问题:
(1)上述两个统计图表是否完整,若不完整,试把它们补全;
(2)若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?来
表1:阶梯式累进制调价方案
级数 | 水量基数 | 现行价格(元/立方米) | 调整后价格(元/立方米) |
第一级 | 每户每月15立方米以下(含15立方米) | 1.80 | 2.50 |
第二级 | 每户每月超出15立方米部分 | 1.80 | 3.30 |
查看答案
如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:
,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.
(1)山坡坡角(即∠ABC)的度数等于______度;
(2)求A、B两点间的距离(结果精确到0.1米,参考数据:
≈1.732).
查看答案