过点E作EF⊥BA的延长线于点F,先由△ABC是边长为6的等边三角形,AD=2求出CD的长,再根据AE∥BC得出△ADE∽△CDB,故可得出AE的长,再由∠ABC=60°,可得出∠FAE=60°,故可得出AF及EF的长,在Rt△BEF中利用勾股定理即可求出BE的长.
【解析】
过点E作EF⊥BA的延长线于点F,
∵△ABC是边长为6的等边三角形,AD=2,
∴CD=6-2=4,
∵AE∥BC,
∴∠ACB=∠EAD,∠ADE=∠BDC,
∴△ADE∽△CDB,
∴=,=解得AE=3,
∵∠ABC=60°,AE∥BC,
∴∠FAE=60°,
∴AF=AE=,EF=AE•sin60°=3×=,
∴BF=AB+AF=6+=,
∴BE===3.
故选A.