满分5 > 初中数学试题 >

如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为的中点,连接...

如图,已知△ABC,以BC为直径,O为圆心的半圆交AC于点F,点E为manfen5.com 满分网的中点,连接BE交AC于点M,AD为△ABC的角平分线,且AD⊥BE,垂足为点H.
(1)求证:AB是半圆O的切线;
(2)若AB=3,BC=4,求BE的长.

manfen5.com 满分网
(1)连接EC,AD为△ABC的角平分线,得∠1=∠2,又AD⊥BE,可证∠3=∠4,由对顶角相等得∠4=∠5,即∠3=∠5,由E为的中点,得∠6=∠7,由BC为直径得∠E=90°,即∠5+∠6=90°,由AD∥CE可证∠2=∠6,从而有∠3+∠7=90°,证明结论; (2)在Rt△ABC中,由勾股定理可求AC=5,由∠3=∠4得AM=AB=3,则CM=AC-AM=2,由(1)可证△CME∽△BCE,利用相似比可得EB=2EC,在Rt△BCE中,根据BE2+CE2=BC2,得BE2+()2=42,可求BE. (1)证明:连接EC, ∵AD⊥BE于H,∠1=∠2, ∴∠3=∠4(1分) ∵∠4=∠5, ∴∠4=∠5=∠3,(2分) 又∵E为的中点, ∴∠6=∠7,(3分), ∵BC是直径, ∴∠E=90°, ∴∠5+∠6=90°, 又∵∠AHM=∠E=90°, ∴AD∥CE, ∴∠2=∠6=∠1, ∴∠3+∠7=90°, 又∵BC是直径, ∴AB是半圆O的切线;(4分) (2)【解析】 ∵AB=3,BC=4, 由(1)知,∠ABC=90°, ∴AC=5(5分) 在△ABM中,AD⊥BM于H,AD平分∠BAC, ∴AM=AB=3, ∴CM=2(6分) ∵∠6=∠7,∠E为公共角, ∴△CME∽△BCE,得===,(7分) ∴EB=2EC,在Rt△BCE中,BE2+CE2=BC2, 即BE2+()2=42, 解得BE=.(8分)
复制答案
考点分析:
相关试题推荐
如图,一次函数的图象与反比例函数manfen5.com 满分网的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0).当x<-1时,一次函数值大于反比例函数值,当x>-1时,一次函数值小于反比例函数值.
(1)求一次函数的解析式;
(2)设函数y2=manfen5.com 满分网的图象与manfen5.com 满分网的图象关于y轴对称,在y2=manfen5.com 满分网的图象上取一点P(P点的横坐标大于2),过P作PQ丄x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.

manfen5.com 满分网 查看答案
学校为了响应国家阳光体育活动,选派部分学生参加足球、乒乓球、篮球、排球队集训.根据参加项目制成如下两幅不完整的统计图(如图1和如图2,要求每位同学只能选择一种自己喜欢的球类,图中用足球、乒乓球、篮球、排球代表喜欢这四种球类某种球类的学生人数)
manfen5.com 满分网
请你根据图中提供的信息解答下列问题:
(1)参加篮球队的有______人,参加足球队的人数占全部参加人数的______%.
(2)喜欢排球队的人数在扇形统计图中所占的圆心角是多少度?并补全频数分布折线统计图.
(3)若足球队只剩一个集训名额,学生小明和小虎都想参加足球队,决定采用随机摸球的方式确定参加权,具体规则如下:一个不透明的袋子中装着标有数字1、2、3、4的四个完全相同的小球,小明随机地从四个小球中摸出一球然后放回,小虎再随机地摸出一球,若小明摸出的小球标有数字比小虎摸出的小球标有的数字大,则小明参加,否则小虎参加,试分析这种规则对双方是否公平?
查看答案
如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2
(1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1
(2)以图中的O为位似中心,将△A1B1C1作位似变换且放大到原来的两倍,得到△A2B2C2

manfen5.com 满分网 查看答案
解关于的方程:manfen5.com 满分网
查看答案
计算:manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.