满分5 > 初中数学试题 >

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF...

如图(1),△ABC与△EFD为等腰直角三角形,AC与DE重合,AB=AC=EF=9,∠BAC=∠DEF=90°,固定△ABC,将△DEF绕点A顺时针旋转,当DF边与AB边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE,DF(或它们的延长线)分别交BC(或它们的延长线)所在的直线于G,H点,如图(2)
manfen5.com 满分网
(1)问:始终与△AGC相似的三角形有____________
(2)设CG=x,BH=y,求y关于x的函数关系式(只要求根据图(2)的情形说明理由);
(3)问:当x为何值时,△AGH是等腰三角形.
(1)根据△ABC与△EFD为等腰直角三角形,AC与DE重合,利用相似三角形的判定定理即可得出结论. (2)由△AGC∽△HAB,利用其对应边成比例列出关于x、y的关系式:9:y=x:9即可. (3)此题要采用分类讨论的思想,当CG<BC时,当CG=BC时,当CG>BC时分别得出即可. 【解析】 (1)∵△ABC与△EFD为等腰直角三角形,AC与DE重合, ∵∠H+∠HAC=45°,∠HAC+∠CAG=45°, ∴∠H=∠CAG, ∵∠ACG=∠B=45°, ∴△AGC∽△HAB, ∴同理可得出:始终与△AGC相似的三角形有△HAB和△HGA; 故答案为:△HAB和△HGA. (2)∵△AGC∽△HAB, ∴AC:HB=GC:AB,即9:y=x:9, ∴y=(0<x<9), ∵AB=AC=9,∠BAC=90°, ∴BC===9. 答:y关于x的函数关系式为y=(0<x<9). (3)①当CG<BC时,∠GAC=∠H<∠HAG, ∴AG<GH, ∵GH<AH, ∴AG<CH<GH, 又∵AH>AG,AH>GH, 此时,△AGH不可能是等腰三角形, ②当CG=BC时,G为BC的中点,H与C重合,△AGH是等腰三角形, 此时,GC=,即x=, ③当CG>BC时,由(1)△AGC∽△HGA, 所以,若△AGH必是等腰三角形,只可能存在GH=AH, 若GH=AH,则AC=CG,此时x=9, 如图(3),当CG=BC时, 注意:DF才旋转到与BC垂直的位置, 此时B,E,G重合,∠AGH=∠GAH=45°, 所以△AGH为等腰三角形,所以CG=9. 综上所述,当x=9或x=或9时,△AGH是等腰三角形.
复制答案
考点分析:
相关试题推荐
A、B两地相距80千米,一辆公共汽车从A地出发,开往B地,2小时后,又从A地同方向开出一辆小汽车,小汽车的速度是公共汽车速度的3倍,结果小汽车比公共汽车早40分钟到达B地,求两种车的速度.
【解析】
设公共汽车的速度为x千米/时,
(Ⅰ)用含有x的代数式表示:
①小汽车的速度为______千米/时.
②公共汽车从A地到B地所用的时间为______小时.
③小汽车从A地到B地所用的时间为______小时.
(Ⅱ)根据题意所列方程为______
(Ⅲ)解得______
(Ⅳ)检验______
(Ⅴ)答:公共汽车的速度为______,小汽车的速度为______
查看答案
如图,小明家在A处,门前有一口池塘,隔着池塘有一条公路l,AB是A到l的小路,现新修一条路AC到公路l,小明测量出∠ACD=30°,∠ABD=45°,BC=50m,请你帮小明计算他家到公路l的距离AD的长度(精确到0.1m;参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
如图,半径AO⊥PO,PB切⊙O于点B,AB交PO于点C,且∠P=60°,OC=1.
(Ⅰ)求证:△PBC是等边三角形;
(Ⅱ)求PC的长.

manfen5.com 满分网 查看答案
如图,直线manfen5.com 满分网与双曲线manfen5.com 满分网交于A、B两点,且点A的横坐标为4.
(Ⅰ)求出A点的坐标和k的值
(Ⅱ)写出点B的坐标.并观察图象回答,当正比例函数的值大于反比例函数的值时自变量x的取值范围.

manfen5.com 满分网 查看答案
某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.
(1)用“列表法”或“树状图法”表示所有可能出现的结果;
(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.