满分5 > 初中数学试题 >

如图,直线y=-x-1与抛物线y=ax2+bx-4都经过点A(-1,0)、C(3...

如图,直线y=-x-1与抛物线y=ax2+bx-4都经过点A(-1,0)、C(3,-4).
(1)求抛物线的解析式;
(2)动点P在线段AC上,过点P作x轴的垂线与抛物线相交于点E,求线段PE长度的最大值;
(3)当线段PE的长度取得最大值时,在抛物线上是否存在点Q,使△PCQ是以PC为直角边的直角三角形?若存在,请求出Q点的坐标;若不存在.请说明理由.

manfen5.com 满分网
(1)已知抛物线图象上的两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值. (2)首先要弄清的是PE的长,实际是直线AC与抛物线函数值的差,可设出P点横坐标,根据直线AC和抛物线的解析式表示出P、E的纵坐标,进而得到关于PE与P点横坐标的函数关系式,根据函数的性质即可求出PE的最大值. (3)此题要分作两种情况考虑: ①Rt△PCQ以P为直角顶点,根据直线AC的解析式,可求得直线PQ的解析式y=kx+b中k=1,已知了点P的坐标,即可求得直线PQ的解析式,联立抛物线的解析式,可求得Q点的坐标; ②当Rt△PCQ以C为直角顶点时,方法同上. 【解析】 (1)∵A(-1,0)、C(3,-4)在抛物线y=ax2+bx-4上, ∴, ∴a=1,b=-3, ∴y=x2-3x-4. (2)设动点P的坐标为(m,-m-1),则E点的坐标为(m,m2-3m-4), ∴PE=(-m-1)-(m2-3m-4), =-m2+2m+3, =-(m-1)2+4, ∵PE>0, ∴当m=1时,线段PE最大且为4. (3)假设存在符合条件的Q点; 当线段PE最大时动点P的坐标为(1,-2), ①当PQ⊥PC时, ∵直线PC的解析式为:y=-x-1 ∴直线PQ的解析式可设为:y=x+b, 则有:-2=1+b,b=-3; ∴直线PQ的方程为y=x-3, 联立 得点Q的坐标为:(2+,-1),(2-,--1). ②当CQ⊥PC时,同理可求得直线CQ的解析式为y=x-7; 联立抛物线的解析式得:, 解得,(舍去), ∴Q(1,-6); 综上所述,符合条件的Q点共有3个,坐标为:Q1(2+,-1),Q2(2-,--1),Q3(1,-6).
复制答案
考点分析:
相关试题推荐
如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.
manfen5.com 满分网
(1)当AD=CD时,求证:DE∥AC;
(2)探究:AD为何值时,△BME与△CNE相似?
(3)探究:AD为何值时,四边形MEND与△BDE的面积相等?
查看答案
某商品的进价为每件40元,售价每件不低于50元且不高于80元.售价为每件60元时,每个月可卖出100件;如果每件商品的售价每上涨1元,则每个月少卖2件.如果每件商品的售价每降价1元,则每个月多卖1件.设每件商品的售价为x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)当每件商品的售价高于60元时,定价为多少元使得每个月的利润恰为2250元?
查看答案
如图,⊙O是△ABC的外接圆,∠BAC=60°,BD⊥AC于点D,CE⊥AB于点E.BD与CE相交于H,在BD上取一点M,使BM=CH.
(1)求证:∠BOC=∠BHC; 
(2)若OH=1,求MH的长.

manfen5.com 满分网 查看答案
如图,正方形网格中的每一个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上,若把四边形ABCD绕着AD边的中点O顺时针旋转90°,试解决下列问题:
(1)画出四边形ABCD旋转后的图形A′B′C′D′;
(2)求点C旋转过程中所经过的路径长;
(3)设点B旋转后的对应点为B′,求tan∠DAB′的值.

manfen5.com 满分网 查看答案
将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是______
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是______
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.