满分5 > 初中数学试题 >

如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上...

如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
(1)求证:△AMB≌△ENB;
(2)①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
(3)当AM+BM+CM的最小值为manfen5.com 满分网时,求正方形的边长.

manfen5.com 满分网
(1)由题意得MB=NB,∠ABN=15°,所以∠EBN=45°,容易证出△AMB≌△ENB; (2)①根据“两点之间线段最短”,可得,当M点落在BD的中点时,AM+CM的值最小; ②根据“两点之间线段最短”,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长(如图); (3)作辅助线,过E点作EF⊥BC交CB的延长线于F,由题意求出∠EBF=30°,设正方形的边长为x,在Rt△EFC中,根据勾股定理求得正方形的边长为. (1)证明:∵△ABE是等边三角形, ∴BA=BE,∠ABE=60°. ∵∠MBN=60°, ∴∠MBN-∠ABN=∠ABE-∠ABN. 即∠MBA=∠NBE. 又∵MB=NB, ∴△AMB≌△ENB(SAS).(5分) (2)【解析】 ①当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小.(7分) ②如图,连接CE,当M点位于BD与CE的交点处时, AM+BM+CM的值最小.(9分) 理由如下:连接MN,由(1)知,△AMB≌△ENB, ∴AM=EN, ∵∠MBN=60°,MB=NB, ∴△BMN是等边三角形. ∴BM=MN. ∴AM+BM+CM=EN+MN+CM.(10分) 根据“两点之间线段最短”,得EN+MN+CM=EC最短 ∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.(11分) (3)【解析】 过E点作EF⊥BC交CB的延长线于F, ∴∠EBF=∠ABF-∠ABE=90°-60°=30°. 设正方形的边长为x,则BF=x,EF=. 在Rt△EFC中, ∵EF2+FC2=EC2, ∴()2+(x+x)2=.(12分) 解得,x1=,x2=-(舍去负值). ∴正方形的边长为.(13分)
复制答案
考点分析:
相关试题推荐
有一工程需在规定日期内完成,如果甲单独工作刚好能够按期完成;如果乙单独工作就要超过规定日期3天.现在甲、乙合作2天后余下的工程由乙单独完成刚好在规定日期完成,求规定日期是几天?
解题方案:设规定的日期为x天,
(Ⅰ)用含x的代数式表示:
①甲的工作效率为______
②乙的工作效率为______
(Ⅱ)根据题意,列出相应方程______
(Ⅲ)解这个方程,得______
(Ⅳ)检验:______
(Ⅴ)答:规定日期是______
查看答案
如图,线段AB、DC分别表示甲、乙两建筑物的高,AB⊥BC,DC⊥BC,从B点测得D点的仰角α为60°从A点测得D点的仰角β为30°,已知甲建筑物高AB=36米.
(1)求乙建筑物的高DC;
(2)求甲、乙两建筑物之间的距离BC(结果精确到0.01米).
(参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732)

manfen5.com 满分网 查看答案
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.

manfen5.com 满分网 查看答案
某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.
(1)用“列表法”或“树状图法”表示所有可能出现的结果;
(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?
查看答案
已知反比例函数manfen5.com 满分网的图象经过点A(1,3).
求:(Ⅰ)m的值和这个函数的解析式;
(Ⅱ)当-3<x<-1时,对应的函数y的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.