满分5 > 初中数学试题 >

如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE、CD相...

如图,已知CD是⊙O的直径,AC⊥CD,垂足为C,弦DE∥OA,直线AE、CD相交于点B.
(1)求证:直线AB是⊙O的切线.
(2)当AC=1,BE=2,求tan∠OAC的值.

manfen5.com 满分网
(1)连接OE,由已知的平行,根据两直线平行,同位角相等,内错角也相等得到两对角的相等,然后由半径OD=OE,根据等角对等边得到∠ODE=∠OED,等量代换得∠COA=∠EOA,再由半径OC=OE,公共边的相等,根据“SAS”证明△OAC≌△OAE,最后根据全等三角形的对应角相等得到OE⊥AB,利用经过直径的一端,并且垂直于这条直径的直线是圆的切线可得证; (2)由(1)证得的△OAC≌△OAE,根据全等三角形的对应边相等得到AE=AC=1,再由已知的BE的长相加求出AB的长,然后在直角三角形ABC中,利用勾股定理求出BC的长,再根据一对公共角的相等和一对直角的相等,得到△BOE∽△BAC,根据相似三角形的对应边成比例即可得到的值,等量代换可得的值,即为tan∠OAC的值. (1)证明:如图,连接OE, ∵DE∥OA, ∴∠COA=∠ODE,∠EOA=∠OED, ∵OD=OE, ∴∠ODE=∠OED, ∴∠COA=∠EOA, 又∵OC=OE,OA=OA, ∴△OAC≌△OAE, ∴∠OEA=∠OCA=90°, ∴OE⊥AB, ∴直线AB是⊙O的切线; (2)【解析】 由(1)知△OAC≌△OAE, ∴AE=AC=1,AB=1+2=3,在直角△ABC中,, ∵∠B=∠B,∠BCA=∠BEO, ∴△BOE∽△BAC, ∴, ∴在直角△AOC中,tan∠OAC=.
复制答案
考点分析:
相关试题推荐
2009年王先生在某住宅小区购买了一套140平方米的住房,当时该住房的价格是每平方米2500元,两年后,该住房价格已变成每平方米3600元.
(1)问该住房价格的年平均增长率是多少?
(2)王先生准备进行室内装修,在购买相同质量的材料时,甲、乙两建材商店有不同的优惠方案:在甲商店累计购买2万元材料后,再购买的材料按原价的90%收费.在乙商店累计购买1万元材料时后,再购买的材料按原价95%的收费.当王先生计划累计购买此材料超过2万元时,请你帮他算一算在何种情况下选择哪家建材商店购买材料可获得更大优惠.
查看答案
如图,在▱ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F.求证:AB=BF.

manfen5.com 满分网 查看答案
“校园手机”现象越来越受到社会的关注.为了了解学生和家长对中学生带手机的态度,某记者随机调查了城区若干名学生和家长的看法,调查结果分为:赞成、无所谓、反对,并将调查结果绘制成如下不完整的统计表和统计图:
学生及家长对中学生带手机的态度统计表
对象
人数
态度
赞成无所谓反对
学生803090
家长4080A
根据以上图表信息,解答下列问题:
(1)统计表中的A=______
(2)统计图中表示家长“赞成”的圆心角的度数为______度;
(3)从这次接受调查的学生中,随机抽查一个,恰好是持“反对”态度的学生的概率是多少?

manfen5.com 满分网 查看答案
如图,在平面直角坐标系中,点O为原点,反比例函数y=manfen5.com 满分网的图象经过点(1,4),菱形OABC的顶点A在函数的图象上,对角线OB在x轴上.
(1)求反比例函数的关系式;
(2)直接写出菱形OABC的面积.

manfen5.com 满分网 查看答案
解不等式组:manfen5.com 满分网,并把解集在数轴上表示出来.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.