在平面直角坐标系中,直线y=-
x+6与x轴、y轴分别交于B、C两点.
(1)直接写出B、C两点的坐标;
(2)直线y=x与直线y=-
x+6交于点A,动点P从点O沿OA方向以每秒1个单位的速度运动,设运动时间为t秒(即OP=t).过点P作PQ∥x轴交直线BC于点Q.
①若点P在线段OA上运动时(如图1),过P、Q分别作x轴的垂线,垂足分别为N、M,设矩形PQMN的面积为S,写出S和t之间的函数关系式,并求出S的最大值.
②若点P经过点A后继续按原方向、原速度运动,当运动时间t为何值时,过P、Q、O三点的圆与x轴相切?
考点分析:
相关试题推荐
如图,已知正方形ABCD的边长是2,E是AB的中点,延长BC到点F使CF=AE.
(1)若把△ADE绕点D旋转一定的角度时,能否与△CDF重合?请说明理由.
(2)现把△DCF向左平移,使DC与AB重合,得△ABH,AH交ED于点G.求证:AH⊥ED,并求AG的长.
查看答案
铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.
(1)试销时该品种苹果的进货价是每千克多少元?
(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?
查看答案
一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个,若从中任意摸出一个球,这个球是白球的概率为0.5.
(1)求口袋中红球的个数;
(2)若从中摸出一个球后不放回,再摸出一个球,通过画树状图或列表分析,求两次均摸到白球的概率.
查看答案
(1)如图1,A,E,B,D在同一直线上,在△ABC与△DEF中,AB=DE,AC=DF,AC∥DF.求证:∠C=∠F.
(2)如图2,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求线段BE的长.
查看答案
(1)化简:(x+1)
2+2(1-x)-x
2.
(2)解不等式
,并把解集在数轴上表示出来.
查看答案