如图已知点A (-2,4)和点B (1,0)都在抛物线y=mx
2+2mx+n上.
(1)求m、n;
(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB′的交点为点C,试在x轴上找点D,使得以点B′、C、D为顶点的三角形与△ABC相似.
考点分析:
相关试题推荐
某专卖店专销某种品牌的电子产品,进价12元/只,售价20元/只.为了促销,专卖店决定凡是买10只以上的,每多买一只,售价就降低0.1元(例如,某人买20只,于是每只降价0.1×(20-10)=1元,这样就可以按19元/只的价格购买这20只产品),但是最低价为16元/只.
(1)若顾客想以最低价购买的话,一次至少要买多少只?
(2)若x表示顾客购买该产品的数量,y表示专卖店获得的利润,求y与x的函数关系式;并求出专卖店一次共获利润180元时,该顾客此次所购买的产品数量.
(3)有一天,一位顾客买了46只,另一位顾客买了50只,专卖店发现卖了50只反而比卖46只赚的钱少.为了使每次卖的多赚钱也多,在其他促销条件不变的情况下,最低价16元/只至少要提高到多少元/只?
查看答案
探索规律:
观察下面由※组成的图案和算式,解答问题:
1+3=4=2
21+3+5=9=3
21+3+5+7=16=4
21+3+5+7+9=25=5
2(1)请猜想1+3+5+7+9+…+29=______;
(2)请猜想1+3+5+7+9+…+(2n-1)+(2n+1)=______;
(3)请用上述规律计算:41+43+45+…+77+79.
查看答案
如图,AB为⊙O的直径,BC为⊙O的切线,AC交⊙O于点E,D为AC上一点,∠AOD=∠C.
(1)求证:OD⊥AC;
(2)若AE=8,
,求OD的长.
查看答案
已知:如图:BF、CE相交于点A,AB=AC,D是BC的中点,∠BDF=∠CDE.
求证:(1)△BDF≌△CDE;
(2)AE=AF.
查看答案
某中学七年级某班50名同学参加一次科技竞赛,将竞赛成绩(成绩均为50.5~100.5之间的整数)整理后,画出部分频率直方图,如图所示,已知图中从左到右四个小组的频率依次是0.04,0.16,0.32和0.28.
(1)求第五小组的频率,并补全频率分布直方图;
(2)求竞赛成绩大于80.5分且小于90.5分的学生数;
(3)竞赛成绩的中位数落在第______小组.
查看答案